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Abstract

Hydrostatic behavior for the one dimensional exclusion process with
long jumps in contact with infinite reservoirs at different densities are de-
rived. The jump rate is described by a transition probability p which is
proportional to | · |−(γ+1) for 1 < γ < 2 (supper-diffusive case). The
reservoirs add or remove particles with rate proportional to κ > 0.

Keywords: exclusion process with long jumps; super-diffusion; fractional
Fick’s law.

Resumen

Se deriva el comportamiento hidroestático del proceso de exclusión
simple con saltos largos en contacto con depósitos infinitos con diferentes
densidades. La tasa de salto es descrita por una función de probabili-
dad p que es proporcional a | · |−(γ+1) para 1 < γ < 2 (caso súper-
difusivo). Los depósitos de partículas añaden o retiran partículas con una
tasa propocional a κ > 0.

Palabras clave: proceso de exclusión con salto largos; super-difusión; ley de
Fick fraccionaria.

Mathematics Subject Classification: 82C22, 60K35, 34A08.

1 Introduction

In the microscopic world the particles behave chaotically. By contrast, the be-
havior and properties in the macroscopic world are deterministic. The most in-
teresting is that microscopic behavior are reflected in macroscopic properties.
At this point is where thermodynamic and statistical mechanics appears in order
to explain the relation between these two worlds. Thermodynamic helps to de-
scribe the properties of macroscopic system near to the equilibrium (there is no
net macroscopic flow of matter or energy within the system). For that purpose
is necessary a small number of macroscopic variables (thermodynamic charac-
teristics) such as temperature, density, pressure and others. Statistical mechanics
aims to understand the thermodynamic characteristics of a system on the basis
of its microscopical behavior. For that purpose statistical mechanics uses the
probability theory. In order to understand the role of the probability in statistical
mechanics we flip N times a fair coin. There are 2N possible head and tail con-
figurations, it means that, the behavior of the system is very chaotic and unruly
but thanks to the probability we know that for a large amount of coin tosses the
behavior of the system is predictable.
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In this work we consider the symmetric exclusion process with long jumps
on ΛN := {1, · · · , N − 1} in contact with infinitely many stochastic reservoirs.
Each pair of sites of the bulk {x, y} ⊂ ΛN carries a Poisson process of intensity
one. The Poisson processes associated to different bonds are independent. When
the clock associated to {x, y} rings, the particles at the sites are exchanged with
rate p(y − x), if one of the site is empty and the other one is not. Otherwise
nothing happens. In the dynamics at the left boundary each pair of sites {x, y}
with x ∈ ΛN and y ∈ Z− carries a Poisson process of intensity one, where
they are all independent. If the clock associated to the bound {x, y} rings, then a
particle can get into (resp. get out from) the bulk from (resp. to) the left reservoir
at rate ακp(z) (resp. (1− α)κp(z)) where z = y − x is the size of the jump, if
the site at x is empty (resp. occupied). The right reservoir acts in the same way,
except that α is replaced by β in the jump rates given above. In this paper we
are interested in the case where p(·) has a long tail, proportional to | · |−(1−γ) for
γ ∈ (1, 2).

The aim of this work is to generalize the stationary scenario given in [3] with
a new family operator indexed by κ, defined by its action on smooth functions G
with compact support on (0, 1) by

LκG(u) := cγ lim
ε→0

∫ 1

0
1|u−v|≥ε

G(v)−G(u)

|u− v|1+γ
dv − κγ−1(u−γ + (1− u)−γ),

for u ∈ (0, 1) and where cγ is defined in section 2. For these kind of function
G these operator are symmetric non-positive. In the case κ = 1 we obtain the
restricted fractional Laplacian. In [3] is studied the hydrostatic limit and the frac-
tional Fick’s law. In this paper we explain that these results can be generalized
for the operator Lκ. Even though we deal with the same results using similar
methods (just for the Fick’s law), we are very interested in divulging the results
and these kind of operators to the community.

The outline of this paper is as follows. In Section 2 we describe the model
more precisely. We introduce the hydrodynamic equations and state the results.
In Section 3 we deal with hydrostatic limit and Fick’s law. Finally, we present
the proof for the hydrostatic limit.

2 Notation and results

2.1 The model

For an integer N ≥ 2 let ΛN = {1, . . . , N − 1} and ΩN = {0, 1}ΛN . Fix
γ ∈ (1, 2). Let p(·) be a probability on Z defined by
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p(z) = cγ
1z ̸=0

|z|γ+1
, (1)

where c−1
γ = 2ζγ+1 (ζs is the Riemann zeta function defined for s > 1).

Fix 0 ≤ α ≤ β ≤ 1 and κ > 0. We consider the symmetric long jumps
exclusion process on ΛN with infinitely many stochastic reservoirs with density
α at all negative integer sites j ≤ 0 and with density β at all integer sites j ≥ N
(see [1] for more details about the model).

The process is characterized by its infinitesimal generator

LN = Lb
N + κ

[
Lℓ
N + Lr

N

]
,

where the generator Lb
N corresponds to the bulk dynamics and generators Lℓ

N

and Lr
N corresponding to non-conservative boundary dynamics. The action of

LN on functions f : ΩN → R is given by

(Lb
Nf)(η) =

1

2

∑
x,y∈ΛN

p(x− y)[f(ηxy)− f(η)],

(Lℓ
Nf)(η) =

∑
x∈ΛN
y≤0

p(x− y)cx(η;α)[f(η
x)− f(η)],

(Lr
Nf)(η) =

∑
x∈ΛN
y≥N

p(x− y)cx(η;β)[f(η
x)− f(η)],

(2)

where

(ηxy)z =


ηz, z ̸= x, y,

ηy, z = x,

ηx, z = y.

(ηx)z =

{
ηz, z ̸= x,

1− ηx, z = x,

and for any x ∈ ΛN and any η ∈ ΩN we have that

cx(η;α) = [ηx(1− α) + (1− ηx)α]

and
cx(η;β) = [ηx(1− β) + (1− ηx)β].

Given x ∈ ΛN ∪ {N} and a configuration η, we denote by Wx(η) to the
current over the value x − 1

2 , which is defined as the rate of particles crossing
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x − 1
2 from the left to the right, minus the rate of particles crossing x − 1

2 from
the right to the left. Then, the current can be written as

Wx(η) =
∑

1≤y≤x−1
x−1<z≤N−1

p(z − y)(ηy − ηz)

+κ

[ ∑
x≤z≤N−1

y≤0

p(z − y)(α− ηz)−
∑

1≤y≤x−1
z≥N

p(z − y)(β − ηy)

]

=:W b
x(η) + κW ℓ,r

x (η).

(3)

We will often omit the dependence of Wx on η. We can observe that for any
x ∈ ΛN we have that LNηx is equal to∑
y∈ΛN

p(y − x)[ηy − ηx] + κ
[∑
y≤0

p(y − x)(α− ηx) +
∑
y≥N

p(y − x)(β − ηx)
]
.

Now, we also note that Wx −Wx+1 is equal to∑
1≤y≤x−1

x−1<z≤N−1

p(z − y)(ηy − ηz)−
∑

1≤y≤x
x+1<z≤N−1

p(z − y)(ηy − ηz)

+ κ

[ ∑
x≤z≤N−1

y≤0

p(z − y)(α− ηz)−
∑

x+1≤z≤N−1
y≤0

p(z − y)(α− ηz)

]

+ κ

[ ∑
1≤y≤x
z≥N

p(z − y)(β − ηy)−
∑

1≤y≤x−1
z≥N

p(z − y)(β − ηy)

]
.

Thus, it is not difficult to see that the microscopic continuity equation is

LNηx = −∇Wx := −(Wx+1 −Wx).

Let us denote by {η(t)}t≥0 the Markov process associated to the generator
LN speeded up by Nγ , it means that, the process with generator NγLN . For
ρ ∈ (0, 1), we denote by νρ the Bernoulli product measure in ΩN with density ρ,
that is, the measure whose marginals satisfy νρ(ηx = 1) = 1− νρ(ηx = 0) = ρ.
The irreducible Markov process generated by LN has a unique invariant measure
that we denote by µ̄N and fN,ρ denote its density with respect to the measure νρ.
If α = β = ρ then µ̄N = νρ. To simplify the notation of the expectation
with respect to µ̄N (resp. νρ) we will often use the notation

∫
ΩN

f(η)dµ̄N (η) =

⟨f⟩N
(

resp.
∫
ΩN

f(η)dνρ(η) = ⟨f⟩ρ
)
.
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84 B. JIMÉNEZ — J. RAMÍREZ

2.2 Notation

To properly state the hydrostatic limits, we need to introduce some notations
and definitions. Firstly we abbreviate the Hilbert space L2([0, 1]d, h(u)du) for
d = 1, 2, by L2

h([0, 1]
d). Also, we denote its inner product by ⟨·, ·⟩h and the

corresponding norm by ∥ · ∥h. When h ≡ 1 we simply write L2([0, 1]d), ⟨·, ·⟩
and ∥ · ∥. The set C∞([0, 1]d) denotes the set of restrictions of smooth functions
on R to [0, 1]d. We denote by C∞

c ((0, 1)d) the set of all smooth real-valued
functions defined in (0, 1)d with compact support contained in (0, 1)d.

Now, we recall that the fractional Laplacian −(−∆)γ/2 := −(−∆)
γ/2
R of

exponent γ/2 is defined on the set of functions G : R → R such that∫ ∞

−∞

|G(u)|
(1 + |u|)1+γ

du < ∞, (4)

by

−(−∆)γ/2G (u) = cγ lim
ε→0

∫ ∞

−∞
1|u−v|≥ε

G(v)−G(u)

|u− v|1+γ
dv,

provided that the limit exists (which is the case, for example, if G is in the
Schwartz space). The number cγ is defined in (1). The operator −(−∆)γ/2 is
the generator of a γ-Lévy stable process, up to a multiplicative constant.

We define the operator L by its action on functions G ∈ C∞((0, 1)), by

∀u ∈ (0, 1), (LG)(u) = cγ lim
ε→0

∫ 1

0
1|u−v|≥ε

G(v)−G(u)

|u− v|1+γ
dv. (5)

We can see that the right hand side of (5) is well defined by performing a
second order Taylor expansion of G at u. We observe by a symmetry argument
that, for ε sufficiently small we have that∫ 1

0
1|v−u|≥ε

v − u

|v − u|1+γ
dv =

∫ 1−u

u

v

|v|1+γ
dv,

and we conclude that remainder term is integrable. The operator L is called
the regional fractional Laplacian on (0, 1). The semi inner-product ⟨·, ·⟩γ/2 is
defined on the set C∞((0, 1)) by

⟨G,H⟩γ/2 =
cγ

2

∫∫
[0,1]2

(H(u)−H(v))(G(u)−G(v))

|u− v|1+γ
du dv.

The corresponding semi-norm is denoted by ∥ · ∥γ/2. Observe that for any
G,H ∈ C∞((0, 1)) we have that

⟨G,−LH⟩ = ⟨−LG,H⟩ = ⟨G,H⟩γ/2.
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In order to simplify the notation we define the functions r±N : [0, 1] → R
such that for x ∈ ΛN as follows: at the points x

N the are defined as

r−N ( x
N ) =

∑
y≥x

p(y), r+N ( x
N ) =

∑
y≤x−N

p(y), (6)

with r±N (0) = r±N ( 1
N ) and r±N (1) = r±N (N−1

N ). At the remaining points, we
define it by linear interpolation. Let us consider the functions r± : (0, 1) → R+

defined by r−(u) = cγγ
−1u−γ and r+(u) = cγγ

−1(1 − u)−γ . By Lemma 3.3
of [3] we know that

lim
N→∞

Nγr±N (u) = r±(u), (7)

uniformly in any compact set contained in (0, 1). Moreover, we introduce the
functions

V1(u) = r−(u) + r+(u),

V0(u) = αr−(u) + βr+(u),

ρ∞(u) =
V0(u)

V1(u)
.

(8)

We also introduce a family of operators indexed by κ and defined by

Lκ = L− κV1. (9)

We know that these operators are symmetric and non-positive when acts over
C∞
c ((0, 1)). For κ = 1, we recover the so-called restricted fractional Laplacian

(see [7]):

∀u ∈ (0, 1), −(−∆)γ/2G (u) = (LG)(u)− V1(u)G(u) := (L1G)(u). (10)

In the other hand, if we consider the limit κ → 0 we get the regional frac-
tional Laplacian.

Definition 1 The Sobolev space Hγ/2 := Hγ/2([0, 1]) consists of all square
integrable functions g : (0, 1) → R such that ∥g∥γ/2 < ∞. This is a Hilbert
space for the norm ∥ · ∥Hγ/2 defined by

∥g∥2Hγ/2 := ∥g∥2 + ∥g∥2γ/2.

The elements of this space coincide a.e. with continuous functions. The comple-
tion of C∞

c ((0, 1)) for this norm is denoted by Hγ/2
0 := Hγ/2

0 ([0, 1]). This is a
Hilbert space whose elements coincide a.e. with continuous functions vanishing
at 0 and 1. On Hγ/2

0 , the two norms ∥ · ∥Hγ/2 and ∥ · ∥γ/2 are equivalent.
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We now extend the definition of the regional fractional Laplacian on (0, 1),
which has been defined on C∞((0, 1)), to the space Hγ/2.

Definition 2 For ρ ∈ Hγ/2 we define the distribution Lρ by

⟨Lρ,G⟩ = ⟨ρ,LG⟩, G ∈ C∞
c ((0, 1)).

Let us check that Lρ is indeed a well defined distribution. Consider a se-
quence {Gn}n≥1 ∈ C∞

c ((0, 1)) converging to 0 in the usual topology of the
test functions. By the integration by parts formula for the regional fractional
Laplacian (see Theorem 3.3 in [5]) we have that for any ρ ∈ Hγ/2 , ⟨Lρ,Gn⟩ =
⟨ρ,Gn⟩γ/2. Now using the Cauchy-Schwarz inequality and the mean value the-
orem, we get that ⟨Lρ,Gn⟩ is bounded from above by a constant times

∥ρ∥γ/2∥Gn∥γ/2 . ∥ρ∥γ/2∥G′
n∥2∞

∫∫
[0,1]2

|u− v|1−γdudv,

which goes to 0 as n → ∞ since γ ∈ (1, 2). Therefore Lρ is a well
defined distribution.

2.3 Hydrostatic equation

In this section we define the partial differential equation that the empirical den-
sity solves in the thermodynamic limit N → ∞.

Then, we define the weak solutions of the partial differential equation which
we will deal with. In order to state the hydrostatic limit and fractional Fick’s law
we first define the Hydrostatic equation.

Definition 3 Let κ̂ > 0 be some parameter. We say that ρ̄κ̂ : [0, 1] → [0, 1] is
a weak solution of the stationary regional fractional reaction-diffusion equation
with non-homogeneous Dirichlet boundary conditions given by{

Lκ̂ρ̄
κ̂(u) + κ̂V0(u) = 0, u ∈ (0, 1),

ρ̄κ̂(0) = α, ρ̄κ̂(1) = β,
(11)

if:

1. ρ̄κ̂ ∈ Hγ/2.

2.
∫ 1

0

{
(α−ρ̄κ̂(u))

2

uγ +
(β−ρ̄κ̂(u))

2

(1−u)γ

}
du < ∞.
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3. For any function G ∈ C∞
c ((0, 1)) we have that⟨
ρ̄κ̂,Lκ̂G

⟩
+ κ̂ ⟨G,V0⟩ = 0.

Remark 4 The interior regularity of this solution is studied in [6], but the regu-
larity at the boundary is unknown. In general, the regularity of ρ̄κ at the bound-
aries is an open problem. We know about the regularity for some particular
cases of κ. For example, for κ = ∞ we have an explicit expression given by

ρ̄∞(u) =
V0(u)

V1(u)
for all u ∈ [0, 1], which has Hölder regularity equal to γ at the

boundaries. For κ = 1, the profile ρ̄1 is given in terms of a Poisson kernel and it
has Hölder regularity equal to γ

2 at the boundaries (see [3]).

Remark 5 In fact, item 1. and item 2. of the previous definition implies that
ρκ̂(0) = α and ρκ̂(1) = β, we can see the proof of this in [2].

Remark 6 Since ρ̄∞ is a continuous function such that∫ 1

0

{
(α− ρ̄∞(u))2

uγ
+

(β − ρ̄∞(u))2

(1− u)γ

}
du < ∞

and ρ̄∞(0) = α and ρ̄∞(1) = β. Moreover, we can use item 1. and item 2. in
Definition 3 to obtain that ρ̄κ − ρ̄∞ ∈ Hγ/2

0 ([0, 1]) ∪ L2
V1
([0, 1]).

Lemma 7 There exists a unique weak solution of (11).

Proof. See the proof in section 6.2 of [2].

2.4 Statement of results

We study in this subsection the asymptotic behavior of the empirical measure
under the stationary state µ̄N (hydrostatic limit) for the case where κ ≥ 0. As a
result of hydrostatic limit we obtain a fractional version of the Fick’s law.

Theorem 8 (Hydrostatic limit) Let γ ∈ (1, 2) and κ ≥ 0. For any continuous
function G : [0, 1] → R we have that

lim
N→∞

1

N − 1

N−1∑
z=1

G( z
N )ηz =

∫ 1

0
G(u)ρ̄κ(u)du

in probability under µ̄N , where ρ̄κ:R→[0, 1] is the unique weak solution of (11).
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The classic Fick’s law describes diffusion phenomena. In the standard case,
the diffusion turns out to be described locally. However, in this paper we are
considering a model which presents a non-standard diffusion and it will not be
described locally. Our second result is the following “fractional Fick’s law”.
Recall the definition of the current Wx (see (3)).

Theorem 9 (Fractional Fick’s law) The following fractional Fick’s law holds

lim
N→∞

Nγ−1⟨W[uN ]⟩N = cγ

∫ u

0

∫ 1

u

ρ̄κ(v)− ρ̄κ(w)

(w − v)1+γ
dwdv

+ κ

∫ 1

u
(α− ρκ(v))r−(v)dv

+ κ

∫ u

0
(β − ρκ(v))r+(v)dv,

(12)

where ρ̄κ : R → [0, 1] is the unique weak solution of (11) and u is
arbitrary in (0, 1).

We can observe that the current is a non-local function of the density. The
right hand side of (12) does not depend on u. This can be proved by taking the
derivative with respect to u on the right hand side of (12) and showing that it
vanishes thanks to (3).

An important step in the proof of Theorem 9 is to use stationarity of µ̄N

which give an upper bound of the average current.

Lemma 10 Fix N ≥ 2. There exists a constant C > 0 such that ⟨W1⟩N ≤
CN1−γ .

The proofs of Theorem 9 and Lemma 10 are similar to the argument done in
Theorem 2.4 and Lemma 4.1 of [3], for this reason we omit them.

3 Hydrostatic limit and Fick’s law

In this section we prove Theorem 8. Let M+
d , d = 1, 2, be the space of

positive measures on [0, 1]d with total mass bounded by 1 equipped with the
weak topology. For any η ∈ ΩN the empirical measures πN (η) ∈ M+

1 (resp.
π̂N (η) ∈ M+

2 ) are defined by

πN (η) =
1

N − 1

N−1∑
x=1

ηxδx/N

(
resp. π̂N (η) =

1

(N − 1)2

N−1∑
x,y=1

ηxηyδ(x/N,y/N)

)
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HYDROSTATIC LIMIT FOR THE SYMMETRIC EXCLUSION PROCESS . . . 89

where δu (resp. δ(u,v)) is the Dirac mass on u ∈ [0, 1] (resp. (u, v) ∈ [0, 1]2).
Let PN be the law on M+

1 × M+
2 induced by (πN , π̂N ) : ΩN → M+

1 ×
M+

2 when ΩN is equipped with the non-equilibrium stationary state µ̄N . To
simplify notations, we denote πN (η) (resp. π̂N (η)) by πN (resp. π̂N ) and the
action of π ∈ M+

d on a continuous function G : [0, 1]d → R by ⟨π,G⟩ =∫
[0,1]d G(u)π(du).

Our goal is to prove that every limit point P∗ of the sequence {PN}N≥2 is
concentrated on the set of measures (π, π̂) of M+

1 ×M+
2 such that π (resp. π̂)

is absolutely continuous with respect to the Lebesgue measure on [0, 1] (resp.
[0, 1]2) and whose density ρκ (resp. ρ̄κ(u)ρ̄κ(v)) is a weak solution of (11).

Lemma 11 The sequence {PN}N≥2 is tight. Let P∗ be a limit point of the se-
quence {PN}N≥2. Then P∗ is concentrated on absolutely continuous measures
(π(du), π̂(dudv)) = (π(u)du, π(u)π(v)dudv). The density π is a positive func-
tion in Hγ/2([0, 1]) and satisfies

∫ 1
0

{
(α−π(u))2

uγ + (β−π(u))2

(1−u)γ

}
du < ∞.

Proof. Since M+
d is compact in the weak topology we have that the se-

quence {PN}N≥2 is tight on M+
d (see e.g [4]). P∗ is concentrated on absolutely

continuous measures because the process allows one particle per site. Since π̂N

is a product measure whose marginals are given by πN , by weak convergence,
we have that π̂(u, v) = π(u)π(v) for any (u, v) ∈ [0, 1]2.

The proof that the density π ∈ Hγ/2([0, 1]) and satisfies∫ 1

0

{(α− π(u))2

uγ
+

(β − π(u))2

(1− u)γ

}
du < ∞,

is similar to the one done in Theorem 3.6 in [2] and the fact that µ̄N is
stationary measure.

Let P∗ be a limit point of the sequence {PN}N≥2 whose existence follows
from the previous Lemma. Hereinafter, we assume without lost of generality
that {PN}N≥2 converges to P∗.

Lemma 12 Let ρ̄κ be the unique weak solution of (11). For any F,G in C∞
c ([0, 1])

we have ∫
[0,1]2

{F (u)(LκG)(v) +G(v)(LκF )(u)} Iκ(u, v)dudv = 0, (13)

where
Iκ(u, v) = E∗ [(π(u)− ρ̄κ(u)) (π(v)− ρ̄κ(v))] . (14)
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Proof. We have that

NγLN (⟨πN , G⟩) = 1

1−N

∑
x∈ΛN

Nγ
∑
y∈ΛN

(
G( y

N )−G( x
N )

)
p(y − x)

 ηx

+
κNγ

N − 1

∑
x∈ΛN

G( x
N )

[
r−N ( x

N )(α− ηx) + r+N ( x
N )(β − ηx)

]
.

(15)

Taking the expectation with respect to µ̄N on both sides of (15), by stationar-
ity the left hand side vanishes. By using Lemma 3.3 in [3] and weak convergence
we have that

E∗
[∫ 1

0
(LκG)(u)π(u)du

]
+ κ

∫ 1

0
V0(u)G(u)du = 0. (16)

By a similar argument done in Lemma 4.6 in [3] we get

E∗

[∫
[0,1]2

F (u)(LκG)(v)π(u)π(v)dudv

]

+E∗

[∫
[0,1]2

G(v)(LκF )(u)π(u)π(v)dudv

]

−E∗

[
κ

∫
[0,1]2

{F (u)G(v)V0(v)π(u) + F (u)G(v)V0(u)π(v) } dudv

]
= 0.

(17)

Let ρ̄κ be the unique weak solution of (11). Then we have∫ 1

0
(LκG)(u)ρ̄κ(u)du+ κ

∫ 1

0
G(u)V0(u) du = 0, (18)

for all G ∈ C∞
c ((0, 1)). By using (16) we can get that

E∗

[∫
[0,1]2

F (u)(LκG)(v)π(v)ρ̄κ(u)dudv

]

+ κ

∫
[0,1]2

F (u)G(v)V0(v) ρ̄
κ(u)dudv = 0

(19)
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and

E∗

[∫
[0,1]2

G(v)(LκF )(u)π(u)ρ̄κ(v)dudv

]

+ κ

∫
[0,1]2

F (u)G(v)V0(u) ρ̄
κ(v)dudv = 0.

(20)

Now, from (18) we can get the following equations

E∗

[∫
[0,1]2

F (u)(LκG)(v)π(u)ρ̄κ(v)dudv

]

+ E∗

[
κ

∫
[0,1]2

F (u)G(v)V0(v)π(u)dudv

]
= 0,

(21)

E∗

[∫
[0,1]2

G(v)(LκF )(u)π(v)ρ̄κ(u)dudv

]

+ E∗

[
κ

∫
[0,1]2

F (u)G(v)V0(u)π(v)dudv

]
= 0,

(22)

−
∫
[0,1]2

F (u)(LκG)(v)ρ̄κ(v)ρ̄κ(u)dudv

− κ

∫
[0,1]2

F (u)G(v)V0(v) ρ̄
κ(u)dudv = 0

(23)

and

−
∫
[0,1]2

G(v)(LκG)(u)ρ̄κ(u)ρ̄κ(v)dudv

− κ

∫
[0,1]2

F (u)G(v)V0(u) ρ̄
κ(v)dudv = 0.

(24)

Using equations (17), (19)-(24), then it follows (13).

Now we define the operator

(L1H)(u, v) := (LH(·, v))(u)

with H ∈ C∞((0, 1)2). Similarly we define L2 by acting over the second coor-
dinate. We define the operator L = L1 + L2. Note that if H(u, v) = F (u)G(v)
then we get that

(LH)(u, v) = F (u)(LG)(v) +G(v)(LF )(u).
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We also define the semi inner-product ⟨·, ·⟩1,γ/2 on G ∈ C∞((0, 1)2) as

⟨F,G⟩1,γ/2 =
∫ 1

0
⟨F (·, v), G(·, v)⟩γ/2dv,

and its corresponding semi-norm is denoted by ∥ · ∥1,γ/2. Similarly we define
⟨·, ·⟩2,γ/2 and ∥ · ∥2,γ/2.

We also consider the space Hγ/2

0,V̂
:= Hγ/2

0,V̂
([0, 1]2) as the set of integrable

functions H : (0, 1)2 → R vanishing at the boundary and such that

∥H∥2
Hγ/2

0,V̂

:= ∥H∥21,γ/2 + ∥H∥22,γ/2 + ∥H∥2
V̂
< ∞,

where V̂ (u, v) = V1(u)+V1(v). Let us consider the following definition needed
in the proof of Theorem 8.

Definition 13 We say that Īκ : [0, 1]2 → [0, 1] is a weak solution of

{
(LĪκ)(u, v)− κĪκ(u, v)V̂ (u, v) = 0, (u, v) ∈ (0, 1)2,

Īκ(u, v) = 0, (u, v) ∈ ∂[0, 1]2.
(25)

if

1. Īκ ∈ Hγ/2

0,V̂
.

2. For any function H ∈ C∞
c ((0, 1)2) we have that

⟨Īκ, L̂H⟩ − κ⟨Īκ,H⟩V̂ = 0. (26)

Lemma 14 The unique weak solution of (25) is the constant function equal
to zero.

Proof. It is clear that a zero function is a weak solution of (25). Now, we use
Lax-Milgram’s theorem in order to prove the uniqueness.

Let Bκ : Hγ/2

0,V̂
([0, 1]2)×Hγ/2

0,V̂
([0, 1]2) → R a bilinear form defined as

Bκ(φ, ϱ) = ⟨φ, ϱ⟩1,γ/2 + ⟨φ, ϱ⟩2,γ/2 + κ⟨φ, ϱ⟩V̂ ,

for any functions φ, ϱ ∈ Hγ/2

0,V̂
. We note that Bκ is coercive, indeed

Bκ(φ,φ) = ∥φ∥21,γ/2 + ∥φ∥22,γ/2 + κ∥φ∥2
V̂
≥ min{1, κ}∥φ∥2

Hγ/2

0,V̂

. (27)
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Now by using Cauchy-Schwarz inequality we can get that

|Bκ(φ, ϱ)| ≤ ∥φ∥1,γ/2∥ϱ∥1,γ/2 + ∥φ∥2,γ/2∥ϱ∥2,γ/2 + κ∥φ∥V̂ ∥ϱ∥V̂ .

This inequality allows us to conclude that the bilinear form Bκ is also continu-
ous. Then Lax-Milgram’s theorem guarantees that there exists a unique function
Īκ, which satisfies (26) for any function H ∈ C∞

c ((0, 1)2).

3.1 Proof of theorem 8

Let ρ̄κ(u) the unique weak solution of (11) and recall the definition of the func-
tion Iκ : [0, 1]2 → R introduced in Lemma 12. We want to prove that Iκ is a
weak solution of (25). First, we claim that Iκ ∈ Hγ/2

0,V̂
. Indeed, since ρ̄κ, π ∈

Hγ/2 (see Definition 3 and Lemma 11) then we have that (π − ρ̄κ) ∈ Hγ/2
0

and ∥Iκ∥i,γ/2 are finite for i = 1, 2. In order to show that Iκ ∈ L2
V̂

, note that∫
[0,1]2(I

κ(u, v))2V̂ (u, v)dudv is less than

E∗

[∫
[0,1]2

P 2(u, v)V̂ (u, v)dudv

]
≤ 2E∗

[∫
[0,1]2

P 2(u, v)V1(v)dudv

]
, (28)

where P (u, v) = (π(u)− ρ̄κ(u)) (π(v)− ρ̄κ(v)) and in the last inequality we
performed a change of variables. Also, we can observe the term on the right
hand side of (28) is bounded from above by

4E∗
[∫ 1

0
(π(u)− ρ̄κ(u))2du

∫ 1

0

(
(π(v)− ρ̄∞(v))2 + (ρ̄∞(v)− ρ̄κ(v))2

)
V1(v)dv

]
.

(29)
We know that π, ρ̄κ satisfy items 1. and 2. then by Remarks 5 and 6 we have

that (29) is finite. Therefore we get that Iκ ∈ L2
V̂

. Now, by Lemma 12 we have
that the function Iκ is a weak solution of (25) (note that in Definition 13 the test
function can be taken as the product of two test functions on C∞

c ((0, 1))). By
Lemma 14 we have that Iκ ≡ 0. Whence we conclude that Iκ(u, u) = 0 for
all u ∈ (0, 1) or equivalently P∗ almost surely π = ρ̄κ. This conclude the proof
of Theorem 8.
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