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Abstract

Let (G,+) be a finite abelian group and 3 ≤ k ≤ |G| a positive integer.
The k-barycentric Olson constant denoted by BO(k,G) is defined as the
smallest integer ℓ such that each set A of G with |A| = ℓ contains a subset
with k elements {a1, . . . , ak} satisfying a1 + · · · + ak = kaj for some
1 ≤ j ≤ k. We establish some general conditions on G assuring the
existence of BO(k,G) for each 3 ≤ k ≤ |G|. In particular, from our
results we can derive the existence conditions for cyclic groups and for
elementary p-groups p ≥ 3. We give a special treatment over the existence
condition for the elementary 2-groups.

Keywords: finite abelian group; zero-sum problem; baricentric-sum problem;
Davenport constant; k-barycentric Olson constant.

Resumen

Sean (G,+) un grupo abeliano finito y 3 ≤ k ≤ |G| un entero
positivo. La constante de Olson k-baricéntrica, denotada por BO(k,G),
se define como el menor entero positivo ℓ tal que todo conjunto A de G con
|A| = ℓ contiene un subconjunto con k elementos {a1, . . . , ak} que
satisface a1+· · ·+ak = kaj para algún 1 ≤ j ≤ k. Establecemos algunas
condiciones generales sobre G asegurando la existencia de BO(k,G) para
cada 3 ≤ k ≤ |G|. En particular, a partir de nuestros resultados podemos
determinar las condiciones de existencia para los grupos cíclicos y para
los p-grupos elementales con p ≥ 3. Damos un tratamiento especial a la
condición de existencia para los 2-grupos elementales.

Palabras clave: grupos abelianos finitos; problemas de suma-cero; problemas
de suma baricéntricas; constante de Davenport; constante k-baricéntrica
de Olson.

Mathematics Subject Classification: 11B30, 11B75, 94B05, 94B65, 51E22.

1 Introduction

We recall some standard terminology and notation. We denote by N the positive
integers and we set N0 = N ∪ {0}. For abelian groups, we use additive notation
and we denote the neutral element by 0. For n ∈ N, let Cn denotes a cyclic
group of order n. For each finite abelian group there exists 1 < n1 | · · · | nr

such that G ∼= Cn1 ⊕ · · · ⊕ Cnr . The integer nr is called the exponent of G,
denoted exp(G). The integer r is called the rank of G, denoted r(G). For a
prime p, the p-rank of G, denoted rp(G), is the smallest number i such that ni is
divisible by p. For a prime number p we denote by Fp the field with p elements.

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 28(1): 39–53, Jan–Jun 2021



EXISTENCE CONDITIONS FOR k-BARYCENTRIC OLSON CONSTANT 41

We say that G is a p-group if its exponent is a prime power and we say that G is
an elementary p-group if the exponent is a prime (except for the trivial group).
Let G be an abelian finite group. The sumset of two subsets A and B of G will
be denoted by A + B = {a + b : a ∈ A ∧ b ∈ B}. We denote the sum
of the elements of a subset S of G by σ(S). Furthermore, for an integer k, let∑

k(A) = {σ(B) : B ⊆ A ∧ |B| = k}. Finally, for t an integer, we denote
by t ·A the set of multiples t ·A = {ta : a ∈ A}.

For a finite abelian group (G,+) and 3 ≤ k ≤ |G| a positive integer, the
k-barycentric Olson constant denoted by BO(k,G) is the smallest ℓ such that
each set A with |A| = ℓ over G has a subset with k elements {a1, . . . , ak}
satisfying a1 + · · · + ak = kaj for some 1 ≤ j ≤ k. This set with k ele-
ments is called a k-barycentric set and aj is called its barycenter. Notice that a
k-barycentric set can be written as a weighted zero-sum set that is:

a1 + · · ·+ (1− k)aj + · · ·+ ak = 0.

So that the k-barycentric Olson constant can be seen as a classical example of a
weighted zero-sum constant over a finite abelian group. This constant together
with related invariants have been studied in the literature [5, 6]. The aim of the
present work is to establish conditions on G for the existence of BO(k,G) ≤ |G|
for each 3 ≤ k ≤ |G|. That is to say, for each 3 ≤ k ≤ |G| there exists a
k-barycentric set.

Existence conditions of the k-barycentric Olson constant with
3 ≤ k ≤ |G| were initially considered in [14] with the study on cyclic groups
using the Orbits Theory. In [13] Ordaz, Plagne and Schmid researched on the
existence conditions of BO(k,G) with |G| − 2 ≤ k ≤ |G| over finite abelian
groups G in general; their results were Lemma 1 and Proposition 1. In case there
are no k-barycentric sets in G we write BO(k,G) = |G|+ 1.

Lemma 1 ([13] , Lemma 3.1) Let G be a finite abelian group. Then

σ(G) =

{
b∗ if r2(G) = 1 and b∗ denote the only element with order 2,
0 in other case.

Hence we have that:

BO(|G|, G) =

{
|G|+ 1 if r2(G) = 1,
|G| in other case.

The following result gives the values of BO(|G|−1, G) and BO(|G|−2, G).
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42 L. MARCHAN — O. ORDAZ — J. SALAZAR — F. VILLARROEL

Proposition 1 ([13] , Proposition 3.2) Let G be a finite abelian group. Then for
|G| ≥ 2, we have:

BO(|G| − 1, G) =

{
|G| − 1 if r2(G) = 1,
|G|+ 1 in other case.

and for |G| ≥ 3, we have:

BO(|G| − 2, G) =


|G| − 2 if |G| is odd,
|G|+ 1 if exp(G) = 2 or |G| = 4,
|G| − 1 in other case.

In the Lemma 1 is determine the conditions of existence of BO(|G|, G) and
in the Proposition 1 is determine the conditions of existence of BO(k,G) with
|G| − 2 ≤ k ≤ |G| − 1.

In the same order of ideas of the above results, the main goal of our paper is
to show that the finite abelian groups G with r2(G) = 0 and the finite abelian
groups G with r2(G) = 1 contain a k-barycentric set for each 3 ≤ k ≤ |G| − 3.
Notice that the cyclic groups Cn are members of these groups since r2(Cn) = 0
if and only if n is odd and r2(Cn) = 1 if and only if n is even. Similarly, elemen-
tary p-groups with p ̸= 2, are members of the above groups since r2(C

m
p ) = 0.

In consequence our results solve completely the existence conditions of the
k-barycetric Olson constant, for cyclic groups and for elementary p-groups. It is
clear that the elementary 2-groups are outside the above groups and then we have
a special consideration for its existence conditions for BO(k,Cm

2 ). As a second
goal in our investigation, for some G and k, we give an exact value for BO(k,G)
when it exists. For example, we show that BO(|G| − 3, G) = |G| − 2 for the
abelian groups G with r2(G) = 1, |G| ≥ 8 and non multiple of 3. Moreover, we
show that BO(3m − 3, Cm

3 ) = 3m − 2, in this case r2(C
m
3 ) = 0.

The organization of the paper besides this introduction and the conclusion,
is as follows: a first section on preliminaries, a second section on existence
conditions for general finite abelian groups and finally, a third section on some
existence conditions for elementary 2-groups.
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EXISTENCE CONDITIONS FOR k-BARYCENTRIC OLSON CONSTANT 43

2 Preliminaries

In this section we give some previous and useful results.

Remark 1 Let G be a finite abelian group. Then

i. r2(G) = 0 if and only if |G| is odd.

ii. r2(G) = 1 implies that |G| is even. Let b∗ ∈ G be the only element
of order 2. It is clear that for cyclic groups we have the equivalence
r2(Cn) = 1 if and only if n is even. Also we have that r2(Cm

p ) = 0
for p ̸= 2. Moreover, if t = r2(G) ≥ 1, then |G| is even and G has 2t − 1
elements of order 2.

Proposition 2 Let G be a finite abelian group with |G| ≥ 8 such that r2(G) = 1
and 3 - |G|. Then.

i. −3 ·G = G.

ii. Let a ∈ G and Sa = {x ∈ G : 2x = a}. Then |Sa| ≤ 2.

Proof. i. Let ϕ : G → −3 · G be given by ϕ(a) = −3a where
−3 · G = {3(−a) : a ∈ G}. Let y = 3(−a) ∈ G, then exits a ∈ G such
that ϕ(a) = −3a = 3(−a) = y, therefore ϕ is surjective. Assuming that
ϕ(a1) = ϕ(a2), then −3a1 = −3a2, so that, 3(a1 − a2) = 0. Since 3 - |G|, then
a1 = a2, i.e., ϕ is injective. Then |G| = | − 3 ·G|. Since −3 ·G ⊆ G and G is
finite, then −3 ·G = G.
ii. Assuming we have three different elements a1, a2, a3 ∈ Sa,
then 2a1 = 2a2 and 2a1 = 2a3, in consequence 2(a1 − a2) = 0 and
2(a1 − a3) = 0.

Since a1, a2, a3 are different, then a1−a2 = b∗ and a1−a3 = b∗, where b∗ is
the only element of order 2 in G. Hence a2 = a3, contradiction.
So that |Sg| ≤ 2.

We have the following result:

Proposition 3 If m ≥ 2, then 3m − 2 ≤ BO(3m − 3, Cm
3 ).

Proof. Let A = Cm
3 \{−a,−b, 0} be a (3m−3)-subset over Cm

3 with a+b ̸= 0.
Since σ(Cm

3 ) = 0 and σ(Cm
3 ) = σ(A) + σ(Ac) where Ac = {−a,−b, 0}, then

σ(A) = −σ(Ac) ⇒ σ(A) = −(−a− b+ 0) ⇒ σ(A) = a+ b ̸= 0. Moreover
we have that (3m−3)a = (3m−3)(3a) = (3m−1−1)0 = 0 for all a ∈ A ⊂ Cm

3

since 3x = 0 for all x ∈ Cm
3 . Therefore, there exists a (3m − 3)-subset A over

Cm
3 such that σ(A) ̸= (3m−3)a for all a ∈ A, i.e., 3m−2 ≤ BO(3m−3, Cm

3 ).
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44 L. MARCHAN — O. ORDAZ — J. SALAZAR — F. VILLARROEL

We need the following result:

Proposition 4 Let A be a k-subset of Cm
2 such that 3 ≤ k ≤ 2m.

i. If k is even, then A is a k-barycentric set if and only if σ(A) = 0.

ii. If k is odd, then A is a k-barycentric set if and only if σ(A) ∈ A.

iii. Let Ac = Cm
2 \A the complement of A, then |A| = 2m − |Ac|.

iv. σ(A) = σ(Ac).

v. 0 /∈
∑

2C
m
2 .

Proof. It follows directly.

The following lemma guarantees the existence of k-sets of zero-sum with
4 ≤ k ≤ |G|

2 − 1 in a finite abelian group.

Lemma 2 ([3] , Lemma 7.1) Let G be a finite abelian group de orden |G| ≥ 2.

1. There exists a squarefree zero sequence S ∈ F (G) with |S| = |G| − 1.

2. Let 0 ̸= g0 ∈ G and 1 ≤ k ≤ |G|
2 − 1 with k ̸= 2, if G is an elementary 2-

group. Then there exist a squarefree zero sequence S ∈ F (G) with g0 - S
and |S| = k.

The following corollary is a consequence of the above lemma.

Corollary 1 Let G is an elementary 2-group de orden |G| ≥ 3 such that
0 ̸= x ∈ G and 4 ≤ k ≤ |G|

2 − 1. Then there exist a k-set A of zero-sum
in G such that x /∈ A.

3 Existence conditions of BO(k,G) for general abelian
groups

Let G be a finite. In the following two theorems, the values r2(G) = 0 or
r2(G) = 1 are considered to give an existence condition in the order G to have
a k-barycentric set, for each 3 ≤ k ≤ |G| − 3. Notice that from Remark 1 the
parity of |G| is used and depends on r2(G) = 0 or r2(G) = 1. Observe that
the fact r2(G) = 0 means that for each g ∈ G we have −g ̸= g. The results
provided in this section allow us to establish the existence of BO(k,G) with
3 ≤ k ≤ |G| − 3 for cyclic groups and elementary p-groups. A relationship
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EXISTENCE CONDITIONS FOR k-BARYCENTRIC OLSON CONSTANT 45

between the Harborth g(G) and the k-barycentric Olson BO(k,G) constants
is presented. From these relations, we give exact values of BO(k,G) for some
groups where g(G) exists. Finally we identify some conditions on certain groups
G in order to provide the exact values of BO(|G| − 3, G).

Theorem 1 Let G be a finite abelian group such that r2(G) = 0 and
3 ≤ k ≤ |G| − 3. Then BO(k,G) ≤ |G|.

Proof. Assuming |G| ≥ 9. Let A be a zero-sum set of G such that |A| = 3
with 0 /∈ A and we consider B = {−a : a ∈ A}. Notice that the sets A ∪ {0},
A \ {a} ∪ B \ {−a}} ∪ {0} for some a ∈ A and A ∪ B ∪ {0} over G are
k-barycentric, then BO(k,G) ≤ |G| for k = 4, 5 y 7.

Let C = G \ (A ∪ B ∪ {0}). Notice that since |G| ≥ 9 and also odd then
|C| ≥ 2 is even. Moreover for all c ∈ C we can see that −c ∈ C, assuming the
contrary, we have a contradiction. Hence there exists E ⊆ C with 2 ≤ |E| ≤ |C|
conformed by elements a and its opposite. Since |E| is even then E ∪ A ∪ {0}
or E∪A∪B∪{0} constitute the k-barycentric sets even or odd with barycenter
0, over G. Notice that 6 ≤ k ≤ |G| − 3 with k ̸= 7.

Moreover, since for all 0 ̸= g ∈ G the set {g,−g, 0} over G is a zero-sum
then BO(3, G) ≤ |G|.

Now, we consider the finite abelian groups G of order 3, 5 and 7.
Observe that these groups are cyclic. In what follows we consider the exist-
ence of BO(k,G). By Lemma 1 we have that BO(3, C3) = 3, BO(5, C5) = 5
and BO(7, C7) = 7. Moreover by Proposition 1 we have that BO(4, C5) and
BO(6, C7) does not exist and BO(3, C5) = 3 and BO(5, C7) = 5. Moreover,
the 4-subset A = {0, 1, 2, 4} over C7 a zero-sum and 0 ∈ A, in consequence
BO(4, C7) ≤ 7 and for all 0 ̸= a ∈ C7 the 3-subset A = {0, a,−a} a zero-sum
and 0 ∈ A, hence BO(3, C7) ≤ 7.

The following two corollaries are a direct consequence of the above theorem.

Corollary 2 Let Cn be a cyclic group such that r2(Cn) = 0 and
3 ≤ k ≤ n− 3. Then BO(k,Cn) ≤ n.

Corollary 3 Let Cm
p be a elementary p-group such that r2(C

m
p ) = 0 and

3 ≤ k ≤ pm − 3. Then BO(k,Cm
p ) ≤ pm.

Theorem 2 Let G be a finite abelian group such that r2(G) = 1 and
3 ≤ k ≤ |G| − 3 a positive integer. Then BO(k,G) ≤ |G|.
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46 L. MARCHAN — O. ORDAZ — J. SALAZAR — F. VILLARROEL

Proof. Assuming |G| ≥ 8. Let b∗ ∈ G the only element of order 2. Let A be a 3-
subset with zero-sum over G such that b∗ ∈ A, 0 /∈ A and
B = {−a : a ∈ A} \ {b∗}. It is clear that the sets A ∪ {0} and A \ {b∗} ∪
B ∪ {0} over G are barycentric with barycenter 0. Hence BO(k,G) ≤ |G|
for k = 4 and 5.

Consider now, the set C = G \ (A ∪ B ∪ {0}). By Remark 1 G is even
and then since |A ∪ B ∪ {0}| = 6 we have that |C| ≥ 2 is even. Moreover for
each c ∈ C we have −c ∈ C, assuming the contrary we have a contradiction.
Therefore there exists E ⊆ C with zero-sum and 2 ≤ |E| ≤ |C| conformed by
elements in C and its opposite. Hence the sets E ∪A∪ {0} and E ∪A \ {b∗} ∪
B ∪ {0} give the k-barycentric sets over G, k even and odd with barycenter 0
such that 6 ≤ k ≤ |G| − 3.

Moreover, since for all b∗ ̸= g ∈ G the set {g,−g, 0} of G has zero-sum
then BO(3, G) ≤ |G|.

Now, we consider the finite abelian groups G of order 4 and 6. Observe that
these groups are cyclic. In what follows we consider the existence of BO(k,G).
By Lemma 1 we have that BO(4, C4) and BO(6, C6) does not exist. Moreover
by Proposition 1 we have that BO(3, C4) = 3 and BO(5, C6) = 5. Moreover,
for all 3 ̸= a ∈ C6 the 3-subset A = {0, a,−a} a zero-sum and 0 ∈ A, hence
BO(3, C6) ≤ 6.

The following corollary is a consequence of the above theorem.

Corollary 4 Let Cn be a cyclic group such that r2(Cn) = 1 and 3 ≤ k ≤ n−3.
Then BO(k,Cn) ≤ n.

Theorem 3 Let G be a finite abelian group with |G| ≥ 8, r2(G) = 1 and 3 - |G|.
Then BO (|G| − 3, G) = |G| − 2.

Proof. Let b∗ ∈ G be the only element with order 2. Let A ⊆ G be such that
|A| = |G| − 2. Assuming that A = G \ {a1, a2} and consider
B = A \ [{b∗ + 2a1 − a2, b

∗ + 2a2 − a1} ∪ Sa1+a2−b∗ ]. Since |G| ≥ 8 then
|B| = |A|− 2−|Sa1+a2−b∗ | ≥ (|G|− 2)− 2− 2 = |G|− 6 > 0. Hence B ̸= ∅.

Let b ∈ B ⊆ A be and consider the (|G| − 3)-subset A \ {b} of A and
we will see that A \ {b} is a (|G| − 3)-barycentric set of A. We have that
σ(A\{b}) = σ(A)−σ(b) = σ(G)−a1−a2−b = b∗−a1−a2−b. Moreover, by
Proposition 2 we have −3·G = G, then σ(A\{b}) = b∗−a1−a2−b = −3c for
some c ∈ G. If c = a1, then b = b∗+2a1−a2 /∈ B, contradiction. If c = a2, then
b = b∗+2a2−a1 /∈ B, contradiction. if c = b, then 2b = a1+a2−b∗, in conse-
quence b ∈ Sa1+a2−b∗ * B, contradiction. Hence, c ∈ G\{a1, a2, b} = A\{b}
and therefore σ(A \ {b}) = b∗ − a1 − a2 − b = −3c = (|G| − 3) c, for
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some c ∈ A \ {b}. Hence A \ {b} is a (|G| − 3)-barycentric set of A, i.e.,
BO (|G| − 3, G) ≤ |G| − 2.

Now we see, |G|−2 ≤ BO (|G| − 3, G). Consider the set B = G\[{0, b∗}∪
Sb∗ ]. Since |G| ≥ 8 then, |B| = |G| − 2− |Sb∗ | ≥ |G| − 2− 2 = |G| − 4 > 0.
So that B ̸= ∅.

Let b ∈ B be, then 2b ̸= b and 2b ̸= b∗ since if 2b = b∗,b ∈ Sb∗ . Consider
A = G \ {b∗, b, 2b}, then |A| = |G| − 3 and σ(A) = σ(G \ {b∗, b, 2b}) =
σ(G)− b∗ − b− 2b = b∗ − b∗ − b− 2b = −3b. If σ(A) = −3c for some c ∈ A,
then −3b = −3c, in consequence b = c, this is a contradiction with the fact
that b /∈ A, that is to say, A it is not a (|G| − 3)-barycentric set of G. So that
|G| − 2 ≤ BO (|G| − 3, G). Therefore, BO (|G| − 3, G) = |G| − 2.

The following corollary is a consequence of the above theorem.

Corollary 5 Let Cn be a cyclic group with n ≥ 8, r2(Cn) = 1 and 3 - n.
Then BO (n− 3, G) = n− 2.

Theorem 4 Let m ≥ 2 be then we have that BO(3m − 3, Cm
3 ) = 3m − 2.

Proof. By Proposition 3 we have that 3m − 2 ≤ BO(3m − 3, Cm
3 ). Let A be a

(k−2)-subset over Cm
3 . If σ(A) ∈ A, then the (3m−3)-subset B = A\{σ(A)}

of A is a zero-sum. So that σ(B) = 0 = (3m − 3)b for each b ∈ B. Hence
B = A \ {σ(A)} is a (3m − 3)-barycentric set.

Assuming that σ(A) /∈ A, then σ(A) ∈ Ac where Ac is a 2-subset over
Cm
3 . In consequence Ac = {σ(A), a} with σ(A) ̸= a. Since σ(Cm

3 ) = 0 and
σ(Cm

3 ) = σ(A) + σ(Ac), then σ(Ac) = −σ(A) ⇒ σ(A) + a = −σ(A) ⇒
a+2σ(A) = 0 = 3a ⇒ a = σ(A), a contradiction with the fact that σ(A) ̸= a.
Therefore, BO(3m − 3, Cm

3 ) = 3m − 2.

In what follows we consider the Harborth constant and we give its relation-
ship with the k-barycentric Olson constant.

Definition 1 Let G be a finite abelian group. The Harborth constant, denoted
g(G), is defined as the smallest positive integer ℓ such that each set A ⊆ G with
|A| = ℓ contains a subset B with |B| = exp(G) with zero-sum.

The following remark and theorem establishes a relationship between the
Harborth constant and the zero-sum problem.

Remark 2 Kemnitz showed g(C2
p) = 2p−1 for p ∈ {3, 5, 7} in [9]. In particu-

lar, g(C2
3 ) = 5. More recently Gao and Thangadurai [4] showed g(C2

p) = 2p−1
for prime p ≥ 67 and g(C2

4 ) = 9. In [2] we can find other values for ele-
mentary 3-group; for example g(C3

3 ) = 10, g(C3
3 ) = 21, g(C5

3 ) = 46 and
112 ≤ g(C6

3 ) ≤ 114 [1, 7, 8, 12].
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48 L. MARCHAN — O. ORDAZ — J. SALAZAR — F. VILLARROEL

Theorem 5 ( [11], Theorem 1.1)

g(C2 ⊕ C2n) =

{
2n+ 2 if n is even,
2n+ 3 if n is odd.

The following result determines the exact values of BO(exp(G), G) in finite
abelian groups G where g(G) there exists.

Theorem 6 Let G be a finite abelian group where g(G) exists.
Then BO(exp(G), G) = g(G).

Proof. Let A ⊆ G be such that |A| = g(G), then there exits B ⊆ A with
|B| = exp(G) such that σ(B) = 0. Therefore σ(B) = 0 = exp(G)b for all b ∈
B. Hence B is a (exp(G))-barycentric subset of A, so that BO(exp(G), G) ≤
g(G). Assuming that A ⊆ G with |A| = BO(exp(G), G), then A contains a
(exp(G))-subset such that σ(B) = (exp(G))b = 0 for all b ∈ B. So that B is
a (exp(G))-subset with zero-sum of A, that is to say g(G) ≤ BO(exp(G), G).
Therefore, BO(exp(G), G) = g(G).

The following result gives the exact values of BO(exp(G) + 1, G) for finite
abelian groups where g(G) exists and g(G) ≥ exp(G) + 1.

Theorem 7 Let G be a finite abelian group such that g(G) exists and
g(G) ≥ exp(G) + 1. Then BO(exp(G) + 1, G) = g(G).

Proof. Let A ⊆ G be such that |A| = g(G) ≥ exp(G) + 1, then there exists
B ⊆ A with |B| = exp(G) such that σ(B) = 0 . Now, since |A| ≥ |B|+1, then
there exist some a ∈ A \ B. Let C = B ∪ {a} be then |C| = exp(G) + 1 and
we have that σ(C) = σ(B) + σ({a}) = 0 + a = a = 0 + a = exp(G)a+ a =
(exp(G) + 1)a. Therefore C is a (exp(G) + 1)-barycentric subset of A, hence,
BO(exp(G) + 1, G) ≤ g(G).

Assuming that A ⊆ G such that |A| = BO(exp(G) + 1, G), hence there
exists B ⊆ A such that|B| = exp(G) + 1, hence σ(B) = (exp(G) + 1)b with
b ∈ B. Let C = B \ b be a (exp(G))-subset of A such that
σ(C) = σ(B)− σ{b} = (exp(G)+ 1)b− b = exp(G)b+ b− b = 0. Therefore
C ⊆ A is a (exp(G))-subset with a zero-sum, in consequence
g(G) ≤ BO(exp(G) + 1, G). Therefore, BO(exp(G) + 1, G) = g(G).

The following corollary is a consequence of Theorem 6 and Remark 2.

Corollary 6
BO(3, C2

3 ) = 5, BO(3, C3
3 ) = 10, BO(3, C4

3 ) = 21,BO(3, C5
3 ) = 46 and

112 ≤ BO(3, C6
3 ) ≤ 114.
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The following corollary is a consequence of Theorem 7 and Remark 2.

Corollary 7

BO(4, C2
3 ) = 5, BO(4, C3

3 ) = 10, BO(4, C4
3 ) = 21, BO(4, C5

3 ) = 46
and 112 ≤ BO(4, C6

3 ) ≤ 114.

The following corollary is a consequence of Theorem 7 and Remark 2.

Corollary 8 BO(2n,C2 ⊕ C2n) =

{
2n+ 2 if n is even,
2n+ 3 if n is odd.

The following corollary is a consequence of Theorem 7 and Theorem 5.

Corollary 9 BO(2n+ 1, C2 ⊕ C2n) =

{
2n+ 2 if n is even,
2n+ 3 if n is odd.

Theorem 8 ([13], Theorem 4.2) Let p ≥ 7 be an prime number and
p+1
2 ≤ k ≤ p− 3. Then BO(k,Cp) = k + 1.

Theorem 9 ([13], Theorem 4.3) Let p ≥ 7 be an integer prime number and
k = p−1

2 . Then

BO(k,Cp) =

{
k + 1 if the multiplicity order of 2 module p is odd
k + 2 if it is even.

4 Existence conditions of BO(k,G) for elementary
2-groups

Let Cm
2 be an elementary 2-group of order 2m. From the results cited in [13] we

have that: BO(2m, Cm
2 ) = 2m, BO(2m − 1, Cm

2 ) = 2m + 1 and
BO(2m−2, Cm

2 ) = 2m+1. In this section we study the existence of BO(k,Cm
2 )

for 3 ≤ k ≤ 2m − 3. In some cases when BO(k,Cm
2 ) exists,

we give its exact value.
The following result is a consequence of Proposition 4 and Corollary 1.

Corollary 10 Let k be an even integer such that 4 ≤ k ≤ 2m−1 − 1. Then
BO(k,Cm

2 ) < 2m.

The following result provides the existence of BO(2m−1, Cm
2 ).

Theorem 10 BO(2m−1, Cm
2 ) ≤ 2m.
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Proof. Assuming that BO(2m−1, Cm
2 ) = 2m + 1, i.e., each (2m−1)-subset A of

Cm
2 verifies σ(A) ̸= 0 and σ(Ac) ̸= 0. If 0 ∈ A, then the (2m−1 − 1)-subset

B = A \ {0} verifies that σ(B) ̸= 0, that is to say, there is no (2m−1 − 1)-
subset B with zero-sum over Cm

2 . Else 0 ∈ Ac, then the (2m−1 − 1)-subset
C = Ac \ {0} verifies that σ(C) ̸= 0; hence, there is no (2m−1 − 1)-subset
C with zero-sum over Cm

2 ; then a contradiction with Lemma 2. Therefore,
BO(2m−1, Cm

2 ) ≤ 2m.

The following result gives the existence of BO(k,Cm
2 ) for even k and

2m−1 + 2 ≤ k ≤ 2m − 4.

Theorem 11 Let k be an even number such that 2m−1+2 ≤ k ≤ 2m− 4. Then
BO(k,Cm

2 ) ≤ 2m.

Proof. Assuming that BO(k,Cm
2 ) = 2m + 1, i.e., each k-subset A over Cm

2 is
not barycentric, in consequence σ(A) ̸= 0 and σ(Ac) ̸= 0. Notice that |Ac| =
2m−k is an even integer and we have that 4 ≤ 2m−k ≤ 2m−1−1. So that Cm

2

does not contain a (2m − k)-subset Ac with zero-sum, therefore a contradiction
with Corollary 10. So that, BO(k,Cm

2 ) ≤ 2m.

The following results follow from the last three results .

Corollary 11 Let k be an even integer such that 4 ≤ k ≤ 2m − 4. Then
BO(k,Cm

2 ) ≤ 2m.

In order to complete the existence of BO(k,Cm
2 ), we need to show that

BO(k,Cm
2 ) ≤ 2m for all even integers 3 < k ≤ 2m − 3.

The following result shows the inexistence of BO(3, Cm
2 ).

Theorem 12 BO(3, Cm
2 ) = 2m + 1.

Proof. Assuming that BO(3, Cm
2 ) ≤ 2m, that is to say, there exists a

3-subset A in Cm
2 such that σ(A) ∈ A. Let B = A \ {σ(A)} be a 2-subset

in Cm
2 such that σ(B) = 0 ∈

∑
2C

m
2 ; therefore a contradiction with proposi-

tion 4.v. Hence, BO(3, Cm
2 ) = 2m + 1 .

The following result gives the exact values of BO(2m − 3, Cm
2 ).

Theorem 13 BO(2m − 3, Cm
2 ) = 2m − 3.

Proof. Assuming that BO(2m − 3, Cm
2 ) = 2m + 1, i.e., each (2m − 3)-subset

A over Cm
2 is not barycentric, in consequence σ(A) /∈ A; hence σ(A) ∈ Ac.

Since σ(A) = σ(Ac), then σ(Ac) ∈ Ac. So that, there exists a barycentric
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3-subset Ac in Cm
2 , that is to say, BO(3, Cm

2 ) ≤ 2m; hence a contradiction with
the fact that BO(3, Cm

2 ) = 2m +1. Therefore, BO(2m − 3, Cm
2 ) = 2m − 3.

To finalize the discussion on the existence conditions of BO(k,Cm
2 ) for the

odd integers k in 5 ≤ k ≤ Cm
2 − 5 we will use the following results:

Proposition 5 Let k be an even number and BO(k,Cm
2 ) = q. Then q > k.

Proof. Assuming that BO(k,Cm
2 ) = k, i.e., for each k-subset A over Cm

2 we
have that σ(A) = 0. Let A be a k-barycentric set over Cm

2 such that 0 ∈ A and
consider the (k − 1)-subset B = A \ {0} over Cm

2 , hence σ(B) = σ(A) = 0.
Let 0 ̸= c ∈ Bc be and consider the k-subset D = B ∪ {c} over Cm

2 , hence
σ(D) = σ(B)+σ({c}) = 0+ c = c ̸= 0. Therefore there exists a non barycen-
tric k-subset D over Cm

2 . Hence a contradiction with the fact that
BO(k,Cm

2 ) = k. In consequence, q > k.

Theorem 14 Let k be an even integer such that 4 ≤ k ≤ 2m − 4. If
BO(k,Cm

2 ) = q, then BO(k + 1, Cm
2 ) = q.

Proof. Let A be a q-set over C2
m and B a k-subset over A such that

σ(B) = 0. Since |A| = q > k = |B|, then there exists a ∈ A \ B. Let us
consider the set C = B ∪ {a}, notice that it is a (k + 1)-subset over A such
that σ(C) = σ(B) + σ({a}) = 0 + a = a with a ∈ C, that is to say, C is a
barycentric (k + 1)-subset in A. Hence BO(k + 1, Cm

2 ) ≤ q.
Assuming that A is a subset over C2

m such that |A| = BO(k + 1, Cm
2 ),

then A contains a (k + 1)-subset B such that σ(B) = (k + 1)b = kb + b =
0 + b = b for some b ∈ B. Let C = B \ {b} be the k-subset of A such that
σ(C) = σ(B) − σ({b}) = b − b = 0. Hence C is a barycentric k-subset in A,
i.e., q ≤ BO(k + 1, Cm

2 ). Hence, BO(k + 1, Cm
2 ) = q.

The following result is a direct consequence of the above theorem.

Corollary 12 Let k be an odd integer such that 5 ≤ k ≤ 2m − 5.
Then BO(k,Cm

2 ) ≤ 2m.

The following result proves the increase of the values of BO(k,Cm
2 ) when

k is odd and 4 ≤ k ≤ 2m − 3.

Proposition 6 Let k be an odd integer in 4 ≤ k ≤ 2m − 5. If BO(k,Cm
2 ) = q1

and BO(k + 1, Cm
2 ) = q2, then q1 ≤ q2.
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Proof. Assuming that q2 < q1. Let A be a q2-set over Cm
2 and B a barycentric

(k + 1)-subset of A, that is to say, σ(B) = 0. Let b ∈ B be and consider the
k-subset C = B \ {b} so that σ(C) = σ(B) − σ({b}) = 0 − b = −b = b,
i.e., C is a barycentric k-subset of A. Hence BO(k,Cm

2 ) ≤ q2 < q1, then a
contradiction with the fact that BO(k,Cm

2 ) = q1. Therefore, q1 ≤ q2.

The following result is a direct consequence of the above
result and Theorem 14.

Corollary 13 Let k be an integer such that 4 ≤ k ≤ 2m − 4.
Then BO(k + 1, Cm

2 ) ≥ BO(k,Cm
2 ).

5 Conclusions

The goal of the present paper was to continue with the work in [13] for
3 ≤ k ≤ |G| − 3. Our present main results are Theorem 1 and Theorem 2.
The consequence of these two theorems were the complete existence conditions
of cyclic groups and elementary p-groups. Moreover, in Section 4 the existence
conditions for elementary 2-groups of our constant BO(k,G) was completely
determined. The problem of the existence of BO(k,G) for all abelian groups G
remains open, and also the problem of assigning exact values of the k-barycentric
Olson constant when BO(k,G) exists; some examples are the interesting results
given in Theorem 3 and Theorem 4. The relation between the Harborth and the
k-barycentric Olson constants established in this paper could be a good option
to provide their exact values.
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