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Abstract

The Kerr metric is known to have issues when trying to find a physical
interior solution. In this work we continue our efforts to construct a more
realistic exterior metric for astrophysical objects. A new approximate met-
ric representing the spacetime of a charged, rotating and slightly-deformed
body is obtained by perturbing the Kerr-Newman metric to include the
mass-quadrupole and quadrupole-quadrupole orders. It has a simple form
because it is Kerr-Newman-like.

Keywords: general relativity; solutions of Einstein’s equations; approximation
procedures; weak fields.

Resumen

Se sabe que la métrica de Kerr tiene problemas al tratar de encontrar
una solución física interior. En este trabajo continuamos nuestros esfuer-
zos para construir una métrica exterior más realista para describir objetos
astrofísicos. Una nueva métrica aproximada que representa el espacio-
tiempo de un cuerpo cargado, giratorio y ligeramente deformado, se ob-
tiene perturbando la métrica de Kerr-Newman para incluir los órdenes
de masa-cuadrupolo y cuadrupolo-cuadrupolo. Tiene una forma simple
porque es similar a Kerr-Newman.

Palabras clave: relatividad general; soluciones de las ecuaciones de Einstein;
procedimientos de aproximación; campos débiles.

Mathematics Subject Classification: 83C05, 83C25, 85-02.

1 Introduction

Since Kerr proposed his metric in 1963 [19] multiple efforts have been directed
to finding an interior solution of his space-time [4, 14, 17, 21, 22, 24, 34, 35] or
in generalizing the Kerr metric to a metric that allows a physical interior match-
ing [15, 33, 31, 38]. Nonetheless, no physical interior solution exists. Even
though the Kerr metric does not seem to have a physical interior solution, it has
been widely successful in astrophysics and astronomy. Hence one should expect
that a more realistic metric could be found by perturbing the Kerr space-time.
See [1] for a relatively recent perspective in the issues present in the Kerr metric
that complicate the interior matching.
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Furthermore, from the ongoing efforts to construct an interior metric of the
Kerr metric one can see a slight trend for preference of an oblate spheroid instead
of a sphere [5, 39]. This is a mathematical motivation indicating the value of ex-
ploring metrics of deformed objects. However, the physical motivation is much
more simple: real astrophysical objects are not perfect spheres, hence allowing
for small deformations in a rotating object is a meaningful exercise.

Moreover, the interest in space-times capable of describing charged distribu-
tions has always been high. In the early 1916’s Reissner and Nordström [29, 36]
found their metric, which described a static spherically symmetric charge dis-
tribution. Even though this metric does not handle rotation, it has been used
extensively in astronomy, e.g. for black hole lensing [6] and, in particular,
to study Hawking radiation from a Reissner-Nordström black hole [40]. It is
important to highlight that this kind of studies would benefit from a metric ca-
pable of describing charged objects but including rotation, and with the capa-
bilities of allowing deformed objects. This last property is not fulfilled by the
Kerr-Newman metric [27].

In this article we continue with our efforts in constructing a more realistic
metric capable of representing a real astrophysical object. Here we use a per-
turbative method which utilizes the Lewis metric [2] in order to find space-times
with quadrupole moment while using the Kerr space-time as a seed
metric. Basically, our technique consists in cleverly changing the potentials of
the Lewis metric while maintaining the cross term (rotational term). We have al-
ready applied this technique and obtained other approximate metrics [12, 11, 26].
In comparison to our previous efforts this work includes the addition of charge.
Hence, our new metric is capable of representing a charged, rotating and slightly
deformed massive object.

One of the main uncertainties when computing new solutions of the Einstein
Maxwell Field Equations (EMFE) is how to prove that a given metric would
have physical meaning1. In order to confirm the physical legitimacy of a given
metric one can expand it to its post-linear from and compare the result with the
post-linear version of the Hartle-Thorne (HT) metric [15, 31]. Note that it is
possible to find an inner solution to the HT metric [1], and hence if a metric has
a similar form to the HT metric then an inner solution should exists. See [13, 10]
for a more detailed discussion and some examples.

1Here physical meaning stands for having an interior metric.
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The rest of this paper is organized as follows. Our perturbation method
of the Kerr metric with the help of the Lewis potentials is shown in section 2.
In section 3, a new metric is obtained by means of our perturbative technique.
This metric has rotation, quadrupole moment and charge. It is checked that the
metric is a solution of the EMFE using a REDUCE code [16], this program is
available upon request. The comparison of our metric with the HT one is pre-
sented in 4. In section 5, the Petrov type of the metric is found. It is type I like
the Erez-Rosen metric. We conclude in section 6.

2 The perturbing method for the Kerr metric

Here, and in the following section we will use the method developed by Frutos et
al. in [12, 11, 26] to obtain a Kerr-Newman-like metric, i.e. a space-time capable
of describing a slightly deformed rotating charged mass. We start by using the
connection between the Lewis metric and the Kerr metric to obtain the Lewis
potentials associated to our new metric. These potentials are later used in the
perturbation method.

First of all, we start with the Lewis metric, which is given by [2]

ds2 = −V dt2 + 2Wdtdφ+Xdρ2 + Y dz2 + Zdφ2, (1)

where the chosen canonical coordinates are x1 = ρ and x2 = z. The potentials
V, W, Z, X = eµ and Y = eν are functions of ρ and z with ρ2 = V Z +W 2.

From [2] the transformation that leads to the Kerr metric is

ρ =
√

∆ sin θ and z = (r −M) cos θ, (2)

where ∆ = r2 − 2Mr + a2 + e2, a is the rotational parameter and e is the
electric charge.

Now, the Lewis potentials are chosen as follows

V = VKN e−2ψ =
1

ρ̃2
[∆− a2 sin2 θ] e−2ψ,

W = WKN = −(2Jr − ae2)
ρ̃2

sin2 θ,

X = XKNe2χ = ρ̃2
e2χ

∆
, (3)

Y = YKNe2χ = ρ̃2 e2χ,

Z = ZKNe2ψ =
sin2 θ

ρ̃2
[(r2 + a2)2 − a2∆ sin2 θ] e2ψ,
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where the potentials VKN , WKN , XKN , YKN , ZKN are the Lewis potentials
for the Kerr-Newman metric, and ρ̃2 = r2 + a2 cos2 θ. Also, J = Ma is the
angular momentum.

The cross term potential WKN is unaltered to preserve the following
metric form

ds2 = −∆

ρ̃2
[e−ψdt− aeψ sin2 θdφ]2 +

sin2 θ

ρ̃2
[(r2 + a2)eψdφ− ae−ψdt]2

+ ρ̃2e2χ
(
dr2

∆
+ dθ2

)
. (4)

These potentials guarantee that one gets the Kerr metric if ψ = χ = 0.
The function ψ and χ will be found approximately from the EMFE.

3 The approximate Kerr-Newman metric with
quadrupole

As was stated in the previous section our problem has been reduced to finding
the functions ψ and χ. Here we proceed to find such functions by solving the
EMFE perturbatively. Also, we discuss the limiting cases of the new metric.

The EMFE are given by

Gij = Rij −
R

2
gij = κTij , (5)

∇jF ij =
1√
−g

∂j [
√
−gF ij ] = 0,

where Gij (i, j = 0, 1, 2, 3) are the Einstein tensor components, Rij are the
Ricci tensor components, R is the curvature scalar, κ = 8πG/c4, g = det(gij)
and Tij represent the energy-momentum tensor components, which are given by

4πTij = gklFilFjk −
1

4
F abFab gij , (6)

where Fij = ∂jAi − ∂iAj are the electromagnetic tensor components, and Ai is
the vector potential components.

The 1-form for the vector potential A can be written as follows

A = −er
ρ̃2

[
e−ψdt− aeψ sin2 θdφ

]
. (7)

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 28(2): 295–310, Jul–Dec 2021



300 F. FRUTOS-ALFARO — P. GÓMEZ-OVARES — P. MONTERO-CAMACHO

In addition, the 2-form for the electromagnetic tensor F can be obtained
as follows

F = dA =
1

2
Fijdx

j ∧ dxj . (8)

From (8) we can determine the energy-momentum tensor.

Let us highlight the terms that are neglected in our perturbative approach,
which are

W 2 ∂ψ

∂xi
∼ 0,

W
∂W

∂xi
∂ψ

∂xi
∼ 0,

W 2 ∂χ

∂xi
∼ 0,

W
∂W

∂xi
∂χ

∂xi
∼ 0.

Moreover, eliminating the terms corresponding to the Kerr metric in the
Ricci tensor components, we get the Ricci tensor component of the appendix
of [11]. Note that W plays the role of the rotation, since it is proportional to the
angular momentum. However, the above expressions do not mean that factors
of J2 or a2 vanish, what is being effectively restricted here are combinations of
quadrupoles with the angular momentum or the rotation.

In order to obtain an expression for the Ricci tensor and the curvature scalar,
an Ansatz for ψ and χ with coefficients is proposed [10]. After solving (5), one
finds the Ansatz coefficients:

ψ =
q

r3
P2 + 3

Mq

r4
P2, (9)

χ =
qP2

r3
+

1

3

Mq

r4
(−1 + 5P2 + 5P 2

2 ) +
1

9

q2

r6
(2− 6P2 − 21P 2

2 + 25P 3
2 ),

where q represents the quadrupole parameter and P2 is the usual Legendre poly-
nomial, P2 = (3 cos2 θ − 1)/2.
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Finally we have all the information we require to construct our Kerr-Newman-
like metric. From (4), the metric components are given by

gtt =
e−2ψ

ρ̃2
[a2 sin2 θ −∆],

gtφ =
a

ρ̃2
[∆− (r2 + a2)] sin2 θ =

sin2 θ

ρ̃2
(ae2 − 2Jr), (10)

grr = ρ̃2
e2χ

∆
,

gθθ = ρ̃2e2χ,

gφφ =
e2ψ

ρ̃2
[(r2 + a2)2 − a2∆ sin2 θ] sin2 θ.

We checked that (10) was valid up to order O(aq2, a2q, Maq, Mq2, M2q,
e2q, q3) using a REDUCE code [16].

Now we will focus on the limiting cases of the new metric, i.e. equation (10).
We summarized the limiting cases in Table 1. First, note that if e = 0 in (10)
one recovers the metric found by Frutos et al. in [11]. Therefore, following [11]
the other interesting limiting cases are: The Kerr metric if e = q = 0, the metric
found in [12] if e = a2 = q2 = 0, the Erez-Rosen-like metric described in [11]
if a = e = 0, and the Schwarzchild metric if a = e = q = 0. Furthermore,
one obtains the Kerr-Newman geometry if q = 0. Also, the Reissner-Nordström
metric is obtained if a = q = 0. Thus, all the expected limiting cases can be
obtained from this new metric.

Table 1: Limiting cases.

Absent physical property Small physical property Limiting metric
Charge Quadrupole (linear) Metric found in [11]
Charge Quadrupole (quadratic) Metric found in [10]

Quadrupole - Kerr-Newman
Quadrupole and rotation - Reissner-Nordström
Charge and quadrupole - Kerr

Charge and rotation - Erez-Rosen-like
Charge Quadrupole and rotation Metric found in [12]

Charge, quadrupole and rotation - Schwarzschild

Here we will not show the matching of (10) with the HT metric.
This matching is vital because it guarantees that an interior solution exists.
We will not show it here, since it should be trivial to follow [11] because our met-
ric has the same form, or equivalently one could follow [13].
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Moreover, in [10], it was shown that the multipole structure of this metric without
charge is non-isometric with the Quevedo-Mashhoon [33, 31] and the Manko-
Novikov [25] metrics. Then, this new metric should not be isometric with
charged version of these metrics.

In [10], the first ten relativistic multipoles for this metric without electric
charge using the procedure described in [9] were found. Due to the fact, that our
metric contains the Reissner-Nordström and the Kerr-Newman spacetimes, it is
not necessary to find the relativistic electromagnetic multipoles, but in the paper
of Hoenselaers and Perjés [18] one can find the algorithm to determine them.
Sotiriou and Apostolatos [37] corrected some erros of the expressions given
by [18]. Furthermore, they obtained the relativistic electromagnetic multipoles
for the Kerr-Newman metric [37].

4 Comparison to the Hartle-Thorne metric

In this section, we show that it is possible to transform our metric to the HT one.
To do so, we obtain the post-linear forms of these metrics (HT and our metric).
The post-linear form of our metric is

gtt = −
(

1− 2
M

r
+ 2

Ma2

r3
cos2 θ − 2

q

r3
P2 − 2

Mq

r4
P2

)
,

gtφ = −2
J

r
sin2 θ, (11)

grr = 1 + 2
M

r
+ 4

M2

r2
− a2

r2
sin2 θ − 2

Ma2

r3
(1 + sin2 θ),

− 4
M2a2

r4
(2 + sin2 θ) + 2

q

r3
P2 +

2

3

Mq

r4
(5P 2

2 + 11P2 − 1),

gθθ = r2
(

1 +
a2

r2
cos2 θ + 2

q

r3
P2 +

2

3

Mq

r4
(5P 2

2 + 5P2 − 1)

)
,

gφφ = r2 sin2 θ

(
1 +

a2

r2
+ 2

Ma2

r3
sin2 θ + 2

q

r3
P2 + 6

Mq

r4
P2

)
,

where the second order in q is omitted and e = 0 in order to compare with HT.
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The post-linear form of the HT metric is

gtt = −
(

1− 2U + 2
q

r3
P2 + 2

Mq

r4
P2 −

2

3

J2

r4
(2P2 + 1)

)
,

gtφ = −2
J

r
sin2 θ, (12)

grr = 1 + 2U + 4U2 − 2
q

r3
P2 − 10

Mq

r4
P2 + 2

J2

r4
(8P2 − 1),

gθθ = r2
(

1− 2
q

r3
P2 − 5

Mq

r4
P2 +

J2

r4
P2

)
,

gφφ = r2 sin2 θ

(
1− 2

q

r3
P2 − 5

Mq

r4
P2 +

J2

r4
P2

)
.

The transformation from our metric to the HT one can be obtained from [10],
and changing q →Ma2 − q, at the same level of approximation:

r = R

[
1 +

Mq

R4
f1 +

a2

R2

(
h1 +

M

R
h2 +

M2

R2
h3

)]
, (13)

θ = Θ +
Mq

R4
f2 +

a2

R2

(
h4 +

M

R
h5

)
,

where

f1 = −1

9
(1 + 4P2 − 5P 2

2 ),

f2 =
1

6
(2− 5P2) cos Θ sin Θ,

h1 = −1

2
sin2 Θ,

h2 = −1

2
sin2 Θ,

h3 = 1− 3 cos2 Θ = −2P2,

h4 = −1

2
cos Θ sin Θ,

h5 = − cos Θ sin Θ.

Since our post-linear metric can be transformed to the HT spacetime,
it is possible to construct an interior metric that could be matched to
our exterior spacetime.
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5 Petrov classification

To classify gravitational fields, Petrov devised a method based on the algebraic
symmetries of the Weyl tensor at each event in a Lorentzian manifold [30, 32].
It is customary to employ tetrads to determine the Petrov type. In the Newman-
Penrose formalism [28], the metric components can be written as follows

gij = linj + ljni − (mim̄j +mjm̄i), (14)

where li, nj , mi (m̄i is the complex conjugate of mi) are the null tetrads.
These tetrads has to fulfill

lil
i = nin

i = mim
i = m̄im̄

i = lim
i = lim̄

i = nim
i = nim̄

i = 0,

and

lin
i = nil

i = −1, mim̄
i = m̄im

i = 1.

In our case, the tetrads can be easily constructed from the Kinnersley tetrads for
the Kerr-Newman metric [20].

lj =

(
eψ

∆
(r2 + a2), e−χ, 0,

a

∆
e−ψ

)
,

nj =

(
eψ

2ρ2
(r2 + a2), − ∆

2ρ2
e−χ, 0,

a

2ρ2
e−ψ

)
, (15)

mj =

(
i
aeψ sin θ√

2ρ2
, 0,

e−χ√
2ρ2

, i
e−ψ√

2ρ2 sin θ

)
(r − ia cos θ),

m̄j =

(
−iaeψ sin θ√

2ρ2
, 0,

e−χ√
2ρ2

, −i e−ψ√
2ρ2 sin θ

)
(r + ia cos θ).

From (15), the five Newman-Penrose (NP) scalars2 are determined.

Ψ0 = Wabcdl
amblcmd,

Ψ1 = Wabcdl
anblcmd,

Ψ2 = Wabcdl
ambm̄cnd, (16)

Ψ3 = Wabcdl
anbm̄cnd,

Ψ4 = Wabcdn
am̄bncm̄d,

2Note that in the NP paper, all scalars are negative.
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where Wijlm are the Weyl tensor components,

Wijlm = Rijlm +
1

2
(gimRlj + gjlRmi − gilRmj − gjmRli)

+
R

6
(gilgmj − gimglj). (17)

To determine the Petrov type, the multiplicity of roots of the following quar-
tic equation in the complex variable z has to be found

Ψ0z
4 + 4Ψ1z

3 + 6Ψ2z
2 + 4Ψ3z + Ψ4 = 0. (18)

In Table 2, we explain the different categories of the Petrov classification.

Table 2: Petrov Classification.

Petrov type Solution of (18)
Type I Four distinct roots
Type II One root of multiplicity 2 and the other two roots distinct
Type III One root of multiplicity 3 and the other root distinct
Type D Two distinct roots of multiplicity 2
Type N One root of multiplicity 4
Type O All Ψi = 0, degenerate

Using the Weyl tensor components obtained by means of a REDUCE code, and
the tetrads (15), these scalars become

Ψ0 = −3qr3 sin2 θ

ρ6∆
e−2χ,

Ψ1 =
12qr3 sin θ cos θ√

2ρ6∆
e−2χ,

Ψ2 =

[
Ψ2KN −

6qrP2

ρ6

]
e−2χ, (19)

Ψ3 = −6qr sin θ cos θ√
2ρ6

e−2χ,

Ψ4 = −3qr∆ sin2 θ

4ρ2
e−2χ,

where

Ψ2KN =
1

(r − ia cos θ)3

[
−M +

e2

(r + ia cos θ)

]
. (20)
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When q vanishes, we recover the scalars for Kerr-Newman [3]. Following
the algorithm of Letniowski and McLenaghan [23], one has to calculate the fol-
lowing additional scalars to find the Petrov type

H = Ψ0Ψ2 −Ψ2
1 6= 0,

I = Ψ0Ψ4 − 4Ψ1Ψ3 + 3Ψ2
2 6= 0,

G = Ψ2
0Ψ3 − 3Ψ0Ψ1Ψ2 + 2Ψ3

1 6= 0, (21)

Z = Ψ2
0I − 12H2 6= 0.

From these scalars and following this algorithm, it is found that the metric is
type I up to order O(aq2, a2q, Maq, Mq2, M2q, e2q, eq2 q3), except on the
symmetry axis, where it is exactly type D. If one neglects the q2 terms, the metric
approaches the type D. This behavior is similar as in the Erez-Rosen metric [32].

6 Conclusion

A metric with charge, deformations and rotation was obtained by solving the
EMFE perturbatively. The expected limiting cases of this new metric were re-
covered. Moreover, these limiting cases confirm that our metric adequately de-
scribes a mass with charge and quadrupole under rotation. We successfully ap-
plied the perturbation method developed by Frutos et al in [12, 11, 10, 26] to
obtain a new approximate metric. Notice that the main improvement of our
work with respect to [11, 10] is the inclusion of charge. Ideally, this moves us
closer to representing an actual astrophysical object. Further, one could expect
that careful understanding of this procedure might eventually lead us towards a
magnetized object.

We showed that the new metric can be matched to the HT metric, as in the
previous cases of the non-charged metrics [11, 10]. Particularly, because of the
similarity with that non-charged metric we do not expect any issues in the match-
ing. This matching is important for the sake of showing that an interior metric of
the new metric exists. Moreover, a charged version of HT can be obtained from
our metric easily.

With respect to the Petrov classification, we found that the new solution
is type I up to order third order. It presents a similar behavior as the Erez-
Rosen metric.

Since this new metric can describe real charged astrophysical objects
in a more realistic fashion than the Kerr-Newman or Reissner-Nordström
metrics, our metric should be attractive for astrophysical applications,
like gravitational lensing and relativistic magnetohydrodynamics.
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Furthermore, computational implementation of this metric should not imply ad-
ditional difficulties with respect to current methodologies, since it maintains a
similar form to the commonly used Kerr metric.
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