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Abstract

E. Hrushovski proved that the theory of difference-differential fields of
characteristic zero has a model-companion. We denote it DCFA. In this
paper we study definable abelian groups in a model of DCFA. First we
prove that such a group is embeddable on an algebraic group. Then, we
study one-basedeness, stability and stable embeddability of abelian defin-
able groups.

Keywords: model theory of fields; supersimple theories; difference-differential
fields; definable goups; abelian groups.

Resumen

E. Hrushovski demostró que la teoría de cuerpos diferenciables de
diferencia de característica cero tiene una modelo-compañera. La deno-
tamos DCFA. En este artículo estudiamos los grupos abelianos en un
modelo de DCFA. Primero demostramos que tales grupos son isomorfos
a un subgrupo de un grupo algebraico. Posteriormente, estudiaremos las
propiedades de ser monobasados, estables y establemente inmersibles de
grupos definibles abelianos.

Palabras clave: teoría de modelos de cuerpos; teorías supersimples; cuerpos
diferenciales de diferencia; grupos definibles; grupos abelianos.
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1 Preliminaries

The class of differentially closed fields of characteristic zero with a generic au-
tomorphism is elementary, we denote it DCFA.

Our aim in this paper is to study definable groups in models of DCFA: in sec-
tion 2, we prove that a definable group in a model of DCFA embeds in an alge-
braic group. In section 3, prove that we can reduce questions about 1-basedness
and stable, stable embeddability in DCFA to questions about 1-basedness and
stable, stable embeddability in either DCF or ACFA. We use this, in section 4, to
study the model theory of definable abelian groups.

We give now a brief summary of what we know about DCFA. Since we will
work in difference, differential and difference-differential fields we will denote
the respective languages by Lσ, LD and Lσ,D.

In [1], we give an axiomatization of DCFA and prove its main properties:
given a model of DCFA it is of course a differentially closed field (model of DCF)
and an algebraically closed field with a generic automorphism (model of ACFA).
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DEFINABLE GROUPS IN DCFA 181

Independence is defined by linear disjointness. This theory is not complete,
but its completions are easily described, those completions eliminate imaginar-
ies (moreover, they satisfy the Independence Theorem over algebraically closes
sets) and thus are supersimple and types are ranked by the SU -rank. Forking
is determined by quantifier-free formulas, thus DCFA is quantifier-free ω-stable.
A basis theorem for (perfect) difference-differential ideals imply that in a model
of DCFA the difference-differential Zariski topology (defined in analogy with
Zariski topology in algebraically closed fields) is Noetherian.

Let (K,σ,D) be a model of DCFA, there are two important definable
subfields of K, the field of constants C = {x ∈ K : Dx = 0} and the fixed
field Fix(σ) = {x ∈ K : σ(x) = x}.

Given a ∈ K and A ⊆ K, we define the (σ,D)-transcendence degree of a
over A as the transcendence degree of the difference-differential field generated
by A and a over A. In the cases of DCF and ACFA the finiteness of such a
degree is equivalent to the finiteness of the rank of a over A. However, this does
not hold for DCFA: in [3], we give an example of a set whose generic type has
infinite (σ,D)-transcendence degree but SU -rank 1. This represents a difficulty
in the treatment of definable groups, so we shall try different ways to describe
definable groups departing from properties of groups definable in differential and
difference fields.

In [2] and [4], we proved that Zilber’s dichotomy holds for DCFA: a type of
SU -rank 1 either has a simple geometry (it is 1-based) or has a strong interaction
with (is non-orthogonal to) Fix(σ) ∩ C.

We now introduce some definitions and useful facts about definable groups
in supersimple theories. Let T be a supersimple theory, M a saturated model of
T , let G be a type-definable (definable by an infinite number of formulas) group
and let A ⊂M be a set of parameters.

Definition 1 Let p ∈ S(A). We say that p is a left generic type of G over A if it
is realized in G and for every a ∈ G and b realizing p such that a |⌣Ab, we have
b · a |⌣Aa.
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The following result is proved in [13].

Fact 1 Para bajar la linea

1. Let a, b ∈ G. If tp(a/Ab) is left generic of G, then so is tp(b · a/Ab).

2. Let p ∈ S(A) be realized in G, B = acl(B) ⊃ A, and q ∈ S(B) a
non-forking extension of p. Then p is a generic of G if and only if q is a
generic of G.

3. Let tp(a/A) be generic of G; then so is tp(a−1/A).

4. There exists a generic type of G.

5. A type is left generic if and only if it is right generic.

The following fact is proved in [14, chapter 5].

Fact 2 Let H a type-definable subgroup of G,

1. Let p ∈ S(A), then p is a generic of G over A if and only if
SU(G) = SU(p).

2. SU(G) = SU(H) if and only if [H : G] <∞.

3. SU(H) + SU(G/H) ≤ SU(G) ≤ SU(H)⊕ SU(G/H).

2 Every definable group embeds in an algebraic group

We introduce ∗-definable groups in stable theories. Suppose that T is a complete
theory and M a saturated model of T . A ∗-tuple is a tuple (ai)i∈I , where I is
an index set of cardinality less than the cardinality of M , and ai ∈ M eq, for all
i ∈ I . Let A ⊂ M . A ∗-definable set is a collection of ∗-tuples, indexed by
the same set of parameters I , which is the set of realizations of a partial type
p(xi)i∈I over A. A ∗-definable group is a group with ∗-definable domain and
multiplication.

The following propositions are proved in [9]. Recall that the canonical base
of a strong type p, Cb(p) is the set that is fixed pointwise by the automorphisms
that fix p.
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DEFINABLE GROUPS IN DCFA 183

Proposition 1 Let T be a stable theory; M a saturated model of T . Let
a, b, c, x, y, z be ∗-tuples of M of length strictly less than the cardinal of M ,
such that:

1. acl(M,a, b) = acl(M,a, c) = acl(M, b, c).

2. acl(M,a, x) = acl(M,a, y) and Cb (stp(x, y/M, a)) is interalgebraic
with a over M .

3. As in 2, with b, z, y in place of a, x, y.

4. As in 2, with c, z, x in place of a, x, y.

5. Other than {a, b, c}, {a, x, y}, {b, z, y}, {c, z, x}, any 3-element subset of
{a, b, c, x, y, z} is independent over M.

Then there is a ∗-definable group H defined over M and a′, b′, c′ ∈ H
generic over M such that a is interalgebraic with a′ over M , b is interalgebraic
with b′ over M , c is interalgebraic with c′ over M and a′ · b′ = c′.

Proposition 2 Let T be a simple theory;M a saturated model of T . LetG,H be
type-definable groups, defined over K ≺ M , and let a, b, c ∈ G and
a′, b′, c′ ∈ H such that:

1. a, b are generic independent over M .

2. a · b = c and a′ · b′ = c′.

3. a is interalgebraic with a′ over M , b is interalgebraic with b′ over M and
c is interalgebraic with c′ over M .

Then there is a type-definable over M subgroup G1 of bounded index in G,
and a type-definable over M subgroup H1 of H and a type-definable over M
isomorphism f between G1/N1 and H1/N2, where N1 and N2 are finite normal
subgroups of G1 and H1 respectively.

Remark 1 If T in Proposition 2 is supersimple and G,H are definable, then we
can choose G1 definable of finite index in G and f definable.

The following result is proved in [7].

Proposition 3 Let G be a ∗-definable group in a stable structure. Then there is
a projective system of definable groups with inverse limit G′, and a ∗-definable
isomorphism between G and G′.
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In [12], the author proved that a LD-definable (definable in the language of
differential fields) group in DCF is essentially a differential algebraic group and
that a definable group in DCF virtually embeds in an algebraic group.

So, to prove that a definable group in DCFA embeds in an algebraic group
we will show that it embeds in a LD-definable group.

Theorem 1 Let (U , σ,D) be a model of DCFA, K ≺ U and G a K-definable
group. Then there is an LD-definable group H , a definable subgroup G1 of G
of finite index, and a definable isomorphism between G1/N1 and H1/N2, where
H1 is a definable subgroup of H(U), N1 is a finite normal subgroup of G1, and
N2 is a finite normal subgroup of H1.

Proof. Let a, b, y be generic independent elements of G over K. Let x = a · y,
z = b−1 · y, c = a · b, so x = c · z.

Let ā = (σj(a) : j ∈ Z), and similarly for b̄, c̄, x̄, ȳ, z̄. Then, as the
model-theoretic algebraic closure of a set is the differential-field-theoretic al-
gebraic closure of the set closed by σ, working in DCF, ā, b̄, c̄, x̄, ȳ, z̄ satisfy
the conditions of Proposition 1. Thus there is a ∗-LD-definable group H over
K, and generics a∗, b∗, c∗ ∈ H such that a∗ and b∗ are independent over K,
c∗ = a∗ · b∗, ā is interalgebraic with a∗ over K, b̄ is interalgebraic with b∗ over
K and c̄ is interalgebraic with c∗ over K (the interalgebraicity, independence
and generics in the sense of DCF).

Since DCF is ω-stable, by Proposition 3, H is the inverse limit of
Hi, i ∈ ω, where the Hi are LD-definable groups.

Let πi : H −→ Hi be the i-th canonical epimorphism. Let ai = πi(a
∗),

bi = πi(b
∗) and ci = πi(c

∗). Then a∗ is interalgebraic with (ai)i∈ω over K,
b∗ is interalgebraic with (bi)i∈ω over K and c∗ is interalgebraic with (ci)i∈ω
over K, all interalgebraicities in the sense of DCF.

Since for i < j, ai ∈ K(aj) , bi ∈ K(bj) and ci ∈ K(cj), there is i ∈ ω
such that a is interalgebraic with ai over K, b is interalgebraic with bi over K
and tc is interalgebraic with ci over K in the sense of DCFA. So we can apply
Proposition 2 to a, b, c ∈ G and ai, bi, ci ∈ Hi.

Corollary 1.1 Let G be a definable group. Then there is an algebraic group
H , a definable subgroup G1 of G of finite index, and a definable isomorphism
between G1/N1 and H1/N2, where H1 is a definable subgroup of H(U), N1 is
a finite normal subgroup of G1, and N2 is a finite normal subgroup of H1.
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DEFINABLE GROUPS IN DCFA 185

3 Stability, stable embeddability and 1-basedness

In this section we discuss how to apply results from [5] to obtain similar results
in models of DCFA. We also give a criterion for 1-basedness in DCFA.

We begin with general definitions and facts on supersimple theories.
T will denote a supersimple theory which eliminates imaginaries. Let M be

a saturated model of T .
Let us recall that two types p, q over A ⊆M are orthogonal, denoted p ⊥ q,

if for every set B ⊇ A and every realisations a, b of p and q respectively, a |⌣Bb.

Definition 2 Para bajar

1. Let A ⊂ M and let S be an (∞)-definable set over A. We say that S is
1-based if for every tuple a of S and every B ⊇ A, a and B are independ-
ent over acl(Aa) ∩ acl(B).

2. A type is 1-based if the set of its realizations is 1-based.

The following useful result is proved in [15].

Proposition 4 Para bajar

1. The union of 1-based sets is 1-based.

2. If tp(a/A) and tp(b/Aa) are 1-based, so is tp(a, b/A).

We introduce now stable, stably embedded types (also called fully stable
types).

Definition 3 A (partial) type p over a set A is stable, stably embedded if when-
ever a realizes p and B ⊃ A, then tp(a/B) is definable. Equivalently, let P
denote the set of realizations of p. Then p is stable, stably embedded if and
only if for all set S ∩ Pn where S is definable, there is a set S′ definable with
parameters from P and such that S′ ∩ Pn = S ∩ Pn.
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The following result is proved in [5, Appendix].

Lemma 1 In a model of ACFA, if tpACFA(b/A) and tpACFA(a/Ab) are stable,
stably embedded, so is tpACFA(a, b/A).

Remark 2 In [5, section 4], a certain property of models of ACFA (called super-
ficial stability) is isolated, and guarantees that certain types over algebraically
closed sets are stationary, and therefore definable. It follows from model theo-
retic considerations that if tpACFA(a/A) is such that for any algebraically closed
set B containing A tpACFA(a/B) is stationary, then
tpACFA(a/A) is stable, stably embedded; and a stable, stably embedded type
is stationary.

Lemma 2 Let (K,σ) be a model of ACFA, A = aclσ(A) ⊂ K and a ∈ K.
Then tp(a/A) is stationary if and only if tp(a/A) ⊥ (σ(x) = x), where aclσ
denotes the model-theoretic algebraic closure in ACFA.

Proof. Indeed, write SU(a/A) = ωk + n, and let b ∈ aclσ(Aa) be such
that SU(b/A) = n. Then tp(b/A) ⊥ (σ(x) = x) and, by [5, Thm 4.11],
tp(aclσ(Ab)/A) is stationary. If c ∈ aclσ(Aa) satisfies some non-trivial differ-
ence equation over aclσ(Ab) then SU(c/Ab) < ω and therefore c ∈ aclσ(Ab).
Hence, by [6, Thm 5.3], tp(a/aclσ(Ab)) is stationary, and therefore so is
tp(a/A).

For the converse, there are independent realizations a1, · · · , an of tp(a/A),
and elements b1, · · · , bm ∈ Fix(σ) such that (a1, · · · , an) and (b1, · · · , bm) are
not independent over A. Looking at the field of definition of the
algebraic locus of (b1, · · · , bm) over aclσ(A, a1, · · · , an), there is some
b ∈ Fix(σ) ∩ aclσ(A, a1, · · · , an), b ̸∈ A. Then tp(b/A) is not stationary:
if c ∈ Fix(σ) is independent from b over A, then tp(b/A) has two distinct
non-forking extensions to Ac, one in which

√
b+ c ∈ Fix(σ), the other in

which
√
b+ c ̸∈ Fix(σ). Hence tp(a1, · · · , an/A) is not stationary, and neither

is tp(a/A).

It is important to note that stationarity alone does not imply stability: if a is
transformally transcendental over A = aclσ(A) (a is not the root of a non-zero
σ-polynomial over A), then tpACFA(a/A) is stationary, but it is not stable.

These results can be used to give sufficient conditions on types in DCFA to
be stationary, and stable, stably embedded.
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Proposition 5 Let (K,σ,D) be a model of DCFA, let A = acl(A) ⊂ K, and a
a tuple in K.

1. Assume that tpACFA(a,Da,D
2a, · · · /A) ⊥ σ(x) = x. Then tp(a/A) is

stationary.

2. Assume that for every n, every extension of tpACFA(D
na/Aa · · ·Dn−1a)

is orthogonal to (σ(x) = x). Then tp(a/A) is stable, stably embedded. It
is also 1-based.

3. If tp(a/A) has an extension that is not orthogonal to (σ(x) = x), then
tp(a/A) is not stable, stably embedded.

Proof. Bajar

1. As tpACFA(a,Da,D
2a, · · · /A) ⊥ σ(x) = x, Lemma 2 implies that

tpACFA(a,Da,D
2a, · · · /A) is stationary. Since the tp(a/A) is deter-

mined by tpACFA(a,Da,D
2a, · · · /A) , tp(a/A) is stationary: Let b, c be

two realizations of non-forking extensions of tp(a/A) to a set
B = acl(B) ⊃ A. As tpACFA(a,Da,D

2a, · · · /A) is stationary we
have that tpACFA(b,Db,D

2b, · · · /B) = tpACFA(c,Dc,D
2c, · · · /B). If

φ(x) is an Lσ,D(B)-formula satisfied by b, then there is a Lσ(B)-formula
ψ(x0, · · · , xk) such that ϕ(b) = ψ(b,Db, · · · , Dkb); so we have
ψ(x0,· · ·, xk)∈ tpACFA(b,Db,D

2b,· · ·/B)= tpACFA(c,Dc,D
2c,· · ·/B).

This implies that tp(b/B) = tp(c/B), and thus tp(a/A) is stationary.

2. By Lemma 2 for all n ∈ N and for allB⊃A, tpACFA(D
na/Ba· · ·Dn−1a)

is stationary. Thus, by Remark 2, for all n, tpACFA(D
na/Aa · · ·Dn−1a)

is stable, stably embedded and 1-based. By Lemma 1 stability, stable
embeddability is preserved by extensions, hence tpACFA(a,Da, · · · /A)
is stable, stably embedded, and this implies that all extensions to alge-
braically closed sets are stationary. As above, we deduce that all exten-
sions of tp(a/A) to algebraically closed sets are stationary, hence tp(a/A)
is stable, stably embedded. By Proposition 4 we have also that
tpACFA(a,Da, · · · /A) is 1-based. As tp(a/A) is determined by
tpACFA(a,Da,D

2a, · · · /A) , tp(a/A) is 1-based.

3. Let B = acl(B) ⊃ A such that tp(a/B) ̸⊥ σ(x) = x. If we repeat the
“converse” part of the proof of Lemma 2 we conclude that tp(a/A) is not
stationart, thus it is not stable, stably embedded.
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Remark 3 Let A,K and a be as above.

1. If SU(a/A) = 1, then the stationarity of tp(a/A) implies its stability and
stable embeddability.

2. There are examples of types of SU -rank 1 which satisfy Proposition 5(1)
above but do not satisfy Proposition 5(2). Thus condition Proposition 5(2)
is not implied by stationarity.

Corollary 1.2 Let A = acl(A), and a a tuple in C. Then tp(a/A) is stable,
stably embedded if and only if tpACFA(a/A) is stable, stably embedded. In this
case, it will also be 1-based.

Proposition 6 Let A = acl(A) ⊂ K, and a a tuple in K, with SU(a/A) = 1.
If tpACFA(a/A) ⊥ (σ(x) = x) then tp(a/A) is stable, stably embedded. In
particular, if tpACFA(a/A) is stable, stably embedded, then so is tp(a/A).

Proof. Suppose that tp(a/A) is not stable, stably embedded; then there is
B = acl(B) ⊃ A such that tp(a/B) is not stationary, and therefore
tpACFA(a,Da,D

2a, . . . /B) is not stationary.
By Proposition 5 tpACFA(a,Da,D

2a, . . . /A) ̸⊥ (σ(x) = x). Hence, there
is some algebraically closed difference field L containing A, which is linearly
disjoint from aclACFA(Aa) over A, and an element
b ∈ Fix(σ) ∩ (Lacl(Aa))alg, b ̸∈ L. Looking at the coefficients of the min-
imal polynomial of b over Lacl(Aa), we may assume that b ∈ Lacl(Aa). Let
M = acl(L), and chose (M ′, L′) realizing tp(M,L/A) and independent from a
over A. Then qftpACFA(L

′/Aa) = qftpACFA(L/Aa) and there is
b′ ∈ L′acl(Aa) such that σ(b′) = b′. Since SU(a/L′) = 1, we get
a ∈ acl(L′b′) = L(b′)algD . This implies that tpACFA(a/L

′) ̸⊥ (σ(x) = x),
and gives us a contradiction.

Remark 4 As stated, the result of Proposition 6 is false if one only assumes
SU(a/A) < ω. The correct formulation in that case is as follows:

Assume SU(a/A) < ω and that aclσ(Aa) contains a sequence a1, · · · , an
of tuples such that, for all i ≤ n, working in DCFA, SU(ai/Aa1, · · · , ai−1) = 1.

Under these hypotheses, if tpACFA(a/A) is stable, stably embedded then so
is tp(a/A).

The proof of the following lemma is analogue to the last statement in the
proof of Proposition 5(2).
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DEFINABLE GROUPS IN DCFA 189

Lemma 3 Let a be a tuple of a model of DCFA, and A a subset of that model. If
tpDCF (a/A) is 1-based then tp(a/A) is 1-based.

The [5, Lemma 2, Lemma 3] and Proposition 4 imply the following condition
for 1-basedness, stability and stable embeddability for groups.

Theorem 2 Let 1 −→ G1 −→ G2 −→ G3 −→ 1 be a short exact sequence of
definable groups in a simple theory. Then G2 is stable, stably embedded (resp.
1-based) if and only if G1 and G3 are stable, stably embedded (resp. 1-based).

4 Abelian groups

In this section, we study abelian groups defined over some subset K = acl(K)
of a model (U , σ,D) of DCFA. We investigate whether they are 1-based, and
whether they are stable, stably embedded.

In [3, Lemma 4.3] we proved that a definable subgroup of a connected dif-
ferential algebraic group has finite index in its (σ,D)−Zariski closure. This,
together with Corollary 1.1 and Theorem 2, implies that the study of definable
abelian groups may be reduced to the case when the group H is a
quantifier-free definable subgroup of some commutative algebraic group G, and
G has no proper (infinite) algebraic subgroup, i.e. G is either Ga, Gm, or a
simple abelian variety A.

From now on we suppose all the groups are quantifier-free definable.

We study now all three cases for G.

1. The additive group

Proposition 7 No infinite definable subgroup of Gn
a(U) is 1-based.

Proof. Let H < Gn
a be a definable infinite group. By [3, Lemma 4.4], H is

quantifier-free definable and contains a definable subgroup H0 which is defin-
ably isomorphic to Fix(σ) ∩ C. Hence H is not 1-based.

2. The multiplicative group

The logarithmic derivative lD : Gm → Ga, x 7→ Dx/x is a group epimorphism
with Ker(lD) = Gm(C) (see [11]).

Given a polynomial P (T ) =
∑n

i=0 aiT
i ∈ Z[T ], we denote by P (σ) the

homomorphism defined by x 7→
∑n

i=0 aiσ
i(x).
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Proposition 8 Let H be a quantifier-free Lσ,D-definable subgroup of Gm. If
lD(H) ̸= 0 then H is not 1-based. If lD(H) = 0 then there is a polynomial
P (T ) such that H = Ker(P (σ)). Then we have that H is 1-based if and only if
P (T ) is relatively prime to all cyclotomic polynomials Tm − 1 for all m ∈ N.

Proof. By Proposition 7, if lD(H) ̸= 0 then H is not 1-based. If lD(H) = 0,
as Ker(lD) = Gm(C), H is Lσ-definable in C. Hence there is a polynomial
P (T ) =

∑n
i=0 aiT

i ∈ Z[T ] such that H is defined by Πn
i=0σ

i(Xai) = 1. In
ACFA, H is 1-based, stable, stably embedded if and only if P (T ) is relatively
prime to all cyclotomic polynomials Tm−1 form ≥ 1 (see [8]). By Proposition
5 the same holds for DCFA.

3. Abelian varieties

Definition 4 An abelian variety is a connected algebraic groupA which is com-
plete, that is, for any variety V the projection π : A × V → V is a
closed map.

As a consequence of the definition we have that an abelian variety is com-
mutative.

Let B be an algebraic subgroup of an abelian variety A. Then A/B is an
abelian variety. If in additionB is connected, B is an abelian variety. An abelian
variety is called simple if it has no infinite proper abelian subvarieties. LetA and
B be two abelian varieties. Let f : A → B be a homomorphism. We say that
f is an isogeny if f is surjective and Ker(f) is finite. We say that A and B are
isogenous if there are isogenies f : A→ B and g : B → A.

Proposition 9 ([10]). There is no nontrivial algebraic homomorphism from a
vector group into an abelian variety.

Now we mention some properties concerning 1-basedness of abelian vari-
eties in difference and differential fields.

Consider a saturated model (U , σ) of ACFA. In [8], Hrushovski gives a full
description of definable subgroups of A(U) when A is a simple abelian vari-
ety defined over U . When A is defined over Fix(σ), this description is par-
ticularly simple, at least up to commensurability. Let R = End(A) (the ring
of algebraic endomorphisms of A). If P (T ) =

∑n
i=0 eiT

i ∈ R[T ], define
Ker(P (σ)) = {a ∈ A(U) |

∑n
i=0 ei(σ

i(a)) = 0}.
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Proposition 10 ([8]). Let A be a simple abelian variety defined over U , and let
B be a definable subgroup of A(U) of finite SU -rank.

1. IfA is not isomorphic to an abelian variety defined over (Fix(σ))alg, then
B is 1-based and stable, stably embedded.

2. Assume that A is defined over Fix(σ). Then there is P (T ) ∈ R[T ] such
that B ∩ Ker(P (σ)) has finite index in B and in Ker(P (σ)). Then B
is 1-based if and only if the polynomial P (T ) is relatively prime to all
cyclotomic polynomials Tm − 1, m ∈ N. If B is 1-based, then it is also
stable, stably embedded.

We work now in a saturated model (U , D) of DCF. The following is proved
in [11].

Proposition 11 Let A be an abelian variety. Then there is a LD-definable
(canonical) homomorphism µ : A → Gn

a , for n = dim(A), such that Ker(µ)
has finite Morley rank (a generalization of the notion of algebraic dimension).

Ker(µ), is known as the Manin kernel of A, we denote it by A♯.

Proposition 12 (Properties of the Manin kernel, see [11] for the proofs). Let A
and B be abelian varieties. Then,

1. A♯ is the Kolchin closure of the torsion subgroup Tor(A) of A.

2. (A×B)♯ = A♯ ×B♯, and if B < A then B ∩A# = B#.

3. A differential isogeny between A♯ and B♯ is the restriction of an algebraic
isogeny from A to B.

We say that an abelian variety descends to the constants if it is isomorphic to
an abelian variety defined over the constants.

Proposition 13 (DCF, see [11]). Let A be a simple abelian variety. If A is
defined over C, then A♯ = A(C). If A does not descend to the constants, then A♯

is strongly minimal and 1-based.
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We now return to DCFA and fix a saturated model (U , σ,D) of DCFA and a
simple abelian variety A defined over K = acl(K) ⊂ U .

Let H be an Lσ,D-definable connected subgroup of A defined over the
difference-differential field K and let H̃ be its (σ,D)-Zariski closure. Since
H is 1-based if and only if H̃ is 1-based (see [3, Lemmas 4.3 and 4.4]), we can
suppose that H is quantifier-free definable and quantifier-free connected.

Let µ : A → Gd
a as in Proposition 11. If H ̸⊂ Kerµ then by Proposition 7

H is not 1-based. Assume that H ⊂ A♯.
We first show a very useful lemma.

Lemma 4 Let H be a quantifier-free definable subgroup of A♯ which is
quantifier-free connected. Then H = H ′ ∩ A♯ for some quantifier-free
Lσ-definable subgroup H ′ of A.

Proof. Our hypotheses imply that there is an integer k and a differential subgroup
S ofA×Aσ×· · ·×Aσk

, such thatH = {a ∈ A : (a, σ(a), · · · , σk(a)) ∈ S}. By
Proposition 12.2, replacing S by its Zariski closure S̄ we get
H = {a ∈ A♯ : (a, σ(a), · · · , σk(a)) ∈ S̄}. Thus H = H ′ ∩ A♯, with
H ′ = {a ∈ A : (a, σ(a), · · · , σk(a) ∈ S̄}.

Let us state an immediate consequence of Lemma 4:

Corollary 2.1 If for all k ∈ N,A andAσk
are not isogenous, then SU(A♯) = 1.

Case1: A is isomorphic to a simple abelian variety A′ defined over C.
We can suppose that A is defined over C. Then, by Proposition 13,

A♯ = A(C). Hence, by Proposition 5, H is 1-based for DCFA if and only if
it is 1-based for ACFA; and in that case, by Corollary 1.2, it will also be stable,
stably embedded.

If H = A(C) then we know that H is not 1-based in ACFA.
IfH is a proper subgroup ofA(C), Proposition 10 gives a precise description

of that case.

Case2: A does not descend to C.
Then, by [11, Section 5], A♯ is strongly minimal and 1-based for DCF. By

Lemma 3 it is 1-based for DCFA.
We will now investigate whenH is stable, stably embedded. By 1-basedness

and quantifier-free ω-stability, we know that if X ⊂ A♯ is quantifier-free de-
finable, then X is a Boolean combination of cosets of quantifier-free definable
subgroups of A♯.
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Assume first that H ̸= A♯, and let a be a generic of H over K. Then H
is finite-dimensional, and therefore SU(H) < ω. As H is 1-based, there is an
increasing sequence of subgroups Hi of H with SU(Hi+1/Hi) = 1.

By Lemma 4, we may assume that Hi = Ui ∩ A♯ for some quantifier-free
Lσ-definable subgroups Ui of A. Note that Lemma 4 also implies that each
quotient Ui+1/Ui is c-minimal (i.e., all quantifier-free definable Lσ-definable
subgroups are either finite or of finite index). Furthermore, by elimination of
imaginaries in ACFA, aclσ(Ka) contains tuples ai coding the cosets a + Ui.
Hence, tp(a/K) satisfies the conditions of Remark 4 and we obtain that if
tpACFA(a/K) is stable, stably embedded then so is tp(a/K).

For the other direction, observe that if tpACFA(a/K) is not stable, stably
embedded, then for some i, the generic ACFA-type of Ui+1/Ui is non-orthogonal
to σ(x) = x, and there is a (Lσ)-definable morphism ψ with finite kernel
Ui+1/Ui → B(Fix(σk)) for some k and abelian variety B (see [8]). But,
returning to DCFA, no non-algebraic type realized in Fix(σk) can be stable, sta-
bly embedded, since for instance the formula φ(x, y) = ∃z z2=x+y ∧ σ(z)=z
is not definable (Proposition 5,3). This proves the other implication.

Thus we have shown:

If H is finite dimensional, then tp(a/K) is stable, stably embedded if and
only if tpACFA(a/K) is stable, stably embedded.

Using Lemma 4, Proposition 10 gives us a full description of that case.

In particular, we then have that if H is not stable, stably embedded, then A
is isomorphic to an abelian variety defined over Fix(σk) for some k.

Let us now assume that H = A♯. Let a be a generic of H over K. Then
tpACFA(a, · · · , Dma/K) is the generic type of an algebraic variety V , and is
therefore stationary (by [5, Corollaries 2.11]). Thus, using the finite dimensional
case, if A is not isomorphic to an abelian variety defined over (Fix(σ))alg, then
H is stable, stably embedded. If A is isomorphic to a variety B defined over
Fix(σk), via an isomorphism ψ, then the subgroup ψ−1(Ker(σk − 1)) ∩ A♯ is
not stable, stably embedded.

We summarize the results obtained.
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Theorem 3 Let A be a simple abelian variety, and let H be a quantifier-free
definable subgroup of A(U) defined over K = acl(K). If H ̸⊂ A♯(U), then H
is not 1-based. Assume now that H ⊂ A♯(U), and let a be a generic of H over
K. Then,

1. If A is defined over the field C of constants, then H is 1-based if and
only if it is stable, stably embedded, if and only if every extensions of
tpACFA(a/K) is orthogonal to (σ(x) = x). The results in [8] yield a
complete description of the subgroups H which are not 1-based.

2. If A does not descend to the field C of constants, then H is 1-based.
Moreover,

(a) If A is not isomorphic to an abelian variety defined over Fix(σk)
for some k, then H is stable, stably embedded.

(b) Assume that A is defined over Fix(σ). Then H is stable, stably
embedded if and only if tpACFA(a/K) is stable, stably embedded.
Again, the results in [8] give a full description of this case.
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