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Abstract

A hybrid algorithm which combines mathematical programming tech-
niques (Kruskal’s algorithm and the strategy of maintaining arc consis-
tency to solve constraint satisfaction problem “CSP”) and heuristic meth-
ods (musical composition method and DSATUR) to resolve the robust
graph coloring problem (RGCP) is proposed in this paper. Experimental
result shows that this algorithm is better than the other algorithms pre-
sented on the literature.

Keywords: metaheuristics; combinatorial optimization; integer programming.

Resumen

En este artículo se propone un algoritmo híbrido que combinatécni-
cas de programación matemática (algoritmo de Kruskal y la estrategia de
mantener consistencia de arcos para resolver el problema desatisfacción
de restricciones) y métodos heurísticos (método de composición musical
y DSATUR) para resolver el problema de coloración robusta degráfi-
cas (RGCP). Resultados experimentales muestran que este algorimo da
mejores resultados que otros presentados en la literatura.

Palabras clave:metaheurísticas; optimización combinatoria; programación en-
tera.

Mathematics Subject Classification:05C15.

1 Introduction

Graph theory has provided many models and efficient solution techniques for a
variety of problems that have arisen in different contexts. One of such problems
is to color the vertices of a graph [6, 30, 35, 36]. The graph coloring problem is,
given a graphG = (V,E) with sets of vertices and edges denoted by V and E,
respectively and|V (G)| = n, to minimize the number of colors used for coloring
the vertices of the graph such that no two adjacent vertices have the same color.

The problems that have been modeled as graph coloring problems are varied
and range from those who only have historical or educational interest toappli-
cations in diverse areas, such as the eight queens problem, schoolgirlsproblem
[2], course scheduling [6, 35, 36], cluster analysis [31], frequency assignment
problem [30], map coloring [31], approach for image segmentation [13],design
and operation of flexible manufacturing systems [7], etc.

Certain graph coloring problems can have requirements in the colorations,
specifically, the possibility of converting the criterion to minimize the number of
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colors used in a restriction and seek new approaches of optimization that allow
us to compare the various colorations obtained with a given number of colors.

It is of interest that a coloration is stable in the sense that when adding or
changing edges in the graph, the coloring will continue to be valid. These con-
siderations show that the problem of coloration is a restrictive model for thistype
of problems. Such comparations can be made if we associate a positive weight
to each no edge and use the Robust Graph Coloring Problem (RGCP) introduced
in [31].

Applications in examination timetabling problem, cluster analysis, uncer-
tain resource constraint assignment problems in supply chain management and
machine scheduling have been presented in [31, 33, 21, 19]. Mathematical for-
mulations of the RGCP as a binary linear programming problem and quadratic
assignment among others are proposed in [31].

Genetic algorithms are proposed in [31, 20], simulated annealing and tabu
search algorithms are described in [12, 20, 11], a scatteer search procedure is
presented in [17], other encoding schemes, neighborhood structuresand search
algorithms are proposed in [34], a local search procedure is proposed in [11],
an ant algorithm is proposed in [18] and finally a branch-and-price algorithm is
presented in [1].

In this paper we investigate the use of branch and cut to explore effectively
suitable solution subspaces controlled by a simple external branching frame-
work. The procedure is musical composition method where the neighborhoods
are obtained through the introduction in the integer programming of constraints
called local branching cuts.

The new solution strategy is approximate, though is designed to improve the
heuristic, producing improved solutions.

The paper is organized as follows. Next section describes the robust graph
coloring problem. In Section 3, the proposed algorithms are described. InSec-
tion 4 the experimental methodology is described and a computational analysis
and comparisons on some instances of the RGCP is presented. Finally, in Section
5 some conclusions are given.

2 The robust graph coloring problem

LetG = (V,E) be a graph, it is said that G isk−colorable if each of its vertices
can be assigned one of thek colors in such a way that adjacent vertices do not
have the same color. The minimum value ofk such that G isk − colorable is
the chromatic number of G denoted byχ(G).
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Given complementary graphsG = (V,E), G = (V,E) and a penalty func-
tion P : E → R, the rigidity of ak − coloring of G, denoted byR(C) is the
sum of the penalties of the edges ofG that join vertices with the same color,i.e.

R(C) =
∑

{i,j}∈E, C(i)=C(j)

pij . (1)

Robust graph coloring problem. Find thek − coloring of minimum rigidity,
i.e.,

Min R(C)

s.t
∑k

c=1 xic = 1 ∀ i ∈ {1, · · · , n}
xik + xjk ≤ 1 ∀ {i, j} ∈ E, ∀ c ∈ {1, · · · , k}
xic + xjc − 1 ≤ yij ∀ {i, j} ∈ E, ∀ c ∈ {1, · · · , k}
∑n

i=1 xic ≥ 1 ∀ c ∈ {1, · · · , k},

(2)

where the decision variables are:

xic =

{

1 if C(i) = c
0 if C(i) 6= c

∀ i ∈ {1, · · · , n} ∀ c ∈ {1, · · · , k}.

The following auxiliary variables are considered

yij =

{

1 if ∃ c ∈ {1, · · · , k} such thatxic = xjc
0 otherwise,

∀ {i, j} ∈ E.

The first set of constraints ensures that to each vertex is assigned a single
color. The second set of constraints ensures that the coloring is valid. The third
guarantee that if two vertices not connected by an edge have the same color
then the penalty is added to the objective function and finally the last set of
constraints, introduced in this paper, ensures that all colors are used.

3 Algorithms

Our hybrid, denoted as MP-MMC, combines mathematical programming tech-
niques (Kruskal’s algorithm and the strategy of the maintaining arc consistency
for solving constraint satisfaction problems “CSP”) with heuristic methods (mu-
sical composition and DSATUR). The general structure of our hybrid is shown
in Algorithm 1. Then, a brief description of methods used by this is given.

The Kruskal’s algorithm is a greedy algorithm, which was proposed in [15],
used to find the minimum spanning tree for a connected weighted graph.
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The strategy of maintaining arc consistency, denoted MAC, is an intelligent
search algorithm, which use the information on the value that assume variables
for generating backtracking on possible range of the other variables, for more
details of the MAC we refer the reader to [4, 16, 32, 22].

The musical composition method, denoted MMC, which was presented in
[25], is a metaheuristic, which mimic the social-creativity system involved in
musical composition process. The MMC use a multiagent model, into social
network. This social network is composed of a set ofNc vertices or agents
(which are called composers), and a setE of edges or links (which are rela-
tionships among composers). In this model, each composer has for knowledge
(a set of solutions, each solution is called “tune” and it is represented by an n-
dimensional vector, which is composed by the values of decision variables)and a
set of mechanisms and policies for interaction, based on this, each composer can
communicate and exchange information with other composers. For more details
of the MMC we refer the reader to [25, 26, 27, 28, 29]. The DSATUR algorithm,
which was presented [5], is a sequential coloring algorithm with a dynamically
established order of the vertices.

Algorithm 1: General algorithm, MP-MMC
Input: Instance characteristics to solve, a setθ of parameters
Output: The best found solution

1 begin
2 Determine both a setT of edges contained in̄G and cost ofT based on algorithm 2
3 Create a society withNc composers, with rules of interaction among composers.
4 for each composer into societydo
5 Pi,⋆,⋆ ← a set ofNs solutions create based on algorithm 3.
6 for each solution intoPi,⋆,⋆ do
7 evaluatei,j,⋆ ← evaluation of the solutionPi,⋆,⋆ based on algorithm 6.
8 end
9 end

10 while termination criterion is not metdo
11 Update the artificial society of composers.
12 Exchange information between agents.
13 for each composer into societydo
14 Generate and evaluate a new solutiontunenew accordance with algorithm 7
15 UpdatePi,⋆,⋆ (see Algorithm 10)
16 end
17 Build the solution set.
18 end
19 end
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Algorithm 1 is made up by six phases, which are (1) initializing the opti-
mization process (from input to line 9) (2) interaction among agents into society
(lines 11 and 12); (3) each composer generates a new solution (line 14);(4) up-
date thePi,⋆,⋆ of each composer (line 15); (5) building the set of solutions (line
17) and (6) repeating while the stopping criterion is not fulfilled (lines 10 to 19).
The basic structure of the MP-MMC is similar to the general structure of the
MMC. In the following sections, the steps of our hybrid are described in detail.

3.1 Initializing the optimization process

Initially, in this phase, characteristics of the instance to be solved and the value of
the set working parameters (θMP-MMC) are introduced as input for our hybrid. The
setθMP-MMC is the same as the setθMMC implied in MMC, which is composed
by the maximum number of arrangement (maxarrangement), factor of genius both
innovation (ifg) and change (cfg) factor of exchange among agents (fcla), number
of composers (Nc) and number of chords that integrate the artwork (Ns).

Algorithm 2: Determine a setT of edges
Input: graph of the instance to solve
Output: T andcostT

1 begin
2 M represents a large positive number
3 |V | number of vertices of the graph to solve.
4 Ḡ complementary graph with penalty.
5 Ē set of edges of thēG
6 for i = 1 : |V | − 1 do
7 for j = i+ 1 : |V | do
8 if {i, j} /∈ Ē then
9 Add {i, j} to Ḡ with a costM

10 Add {j, i} to Ḡ with a costM
11 end
12 end
13 end
14 Use Kruskal’s algorithm to find a minimum spanning treeT on Ḡ
15 Delete ofT whatever edge with costM
16 costT is the sum of the costs of edgesT
17 end

After, in step 2, a setT of edges of the complementary graph is determined
based on the algorithm 2.
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Subsequently, in the MP-MMC algorithm is used the algorithm 3 for gener-
ate an initial set of solution (Pi,⋆,⋆ ) for the i-th composer. Algorithm 3 is based
on DSATUR algorithm, however algorithm 3 is a random method that uses a
peak of the number of vertices colored byk-th color.

Algorithm 3: Generate a set of solutions for each composer
Input: Nc,Ns, adjacency matrix (A), penalty matrix (C)
Output: P

1 begin
2 |V | ← number of vertices of the graph to solve
3 K ← number of colors used in the instance to solve

4 p←
⌈

|V |
K

⌉

5 auxiliary is a zeros matrix of(K × |V |)
6 for i = 1 : Nc do
7 for j = 1 : Ns do
8 Pi,j,⋆ ← solution looks for the algorithm 5
9 end

10 end
11 end

Algorithm 4: Determineprobability matrix
Input: |V |, adjacency matrix (A), penalty matrix (C)
Output: P

1 begin
2 Built a opportunity cost matrix (OC) consideredC

a1 ←
∑|V |

i=1

∑|V |
j=1Aij

3 a2 ←
∑|V |

i=1

∑|V |
j=1OCij

4 for i = 1 : |V | do

5 probability i,1 ←

∑|V |
j=1Ai,j

a1

6 probability i,2 ←

∑|V |
j=1OCi,j

a2
7 end
8 end
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Algorithm 5: Randomized Dsatur algorithm with peak
Input: |V |,K,A, p
Output: new_solution

1 begin
2 new_solution is a zeros vector(1× |V |)
3 pselection ← probability∗,1 obtained with algorithm 4
4 for k = 1 : K do
5 if there is a vertex not colouredthen
6 va is a not yet coloured vertex inV , which is randomly selected with base in

pselection
7 new_solution1,va ← k

8 pselectionva = 0

9 a2 =
∑|V |

l=1 pselectionl

10 a1 = 1
11 auxiliaryk,∗ ← Ava,:

12 while (a2 6= 0) ∧ (a1 < p) do
13 apselection = ∅
14 for l = 1 : |V | do
15 if thel − th vertex has not been coloured andauxiliaryk,l = 0 then
16 apselectionl

= probabilityl,1
17 else
18 apselectionl

= 0
19 end
20 end
21 aa2 =

∑

apselection
22 if aa2 6= 0 then
23 apselectionl

=
apselectionl

aa2
∀l = 1, . . . , |V |

24 vs is a vertex inV , which is randomly selected with base inapselection
25 new_solution1,vs ← k

26 pselectionvs = 0

27 a2 =
∑

pselection
28 a1 = a1 + 1
29 auxiliaryk,∗ ← auxiliaryk,∗ +Avs,∗

30 else
31 a1 = p

32 end
33 end
34 else
35 va is a vertex inV , which is arbitrarily selected
36 new_solution1,va ← k

37 end
38 end
39 for l = 1 : |V | do
40 if new_solution1,l = 0 then
41 new_solution1,l = 1 + round(rand ∗ (K − 1))
42 end
43 end
44 evaluation← Evaluatenew_solution based on algorithm 6
45 new_solution = new_solution ∪ evaluation
46 end
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Algorithm 6: Evaluatej − th solution
Input: T , new_solution,C,A,K
Output: evaluation

1 Determine the number of constraints not metC(C) by solution
2 if C(C) = 0 then
3 R(C)← is the value of the objective function in the solution
4 else
5 R(C)← “− ”
6 end
7 a1 is the number of edges in the solution content inT

8 a2 =
⌈

|V |
K

⌉

9 a3 =
⌊

|V |
K

⌋

10 for k = 1 : K do
11 a4 is number of vertices of thek − th color

12 Difk = 1
2
∗
(

(a4−a2)
2

K
+

(a4−a3)
2

K

)

13 end

14 a5 =
∑|K|

k=1Difk
15 T (C) = (|T | − a1) + a5 +R(C) ∗ C(C) + 1)
16 evaluation = [C(C) R(C) T (C)]

3.2 Interacting among agents
In this phase, composers exchange information according to a interaction policy
specific. The interaction policy, used in this work, is “the composeri learns from
the composerk, if there is a link between them and if the artwork of composerk
has more desirable characteristics than the artwork of composeri”. This policy
was proposed in [25, 26, 27].

This phase is made up by two sub phases, which are 1)updating the links
between composers, in which each composer can choose to modify his relation
with other composer into society and 2)information exchange procedure, in this
sub phase, each composer interacts with other composers into society so the
i− th composer takes and gives information with other composers into society,
after, thei-th composer builds his matrix of the acquired knowledge (ISCi,⋆,⋆).
Routines employed by this phase were presented in [25, 26, 27].

3.3 Generating a new solution
In this phase, each composer will create a new tune utilizing his knowledge.
This phase is divided into two sub phases: 1)building the knowledge matrix
(KM ). Each composer constructs hisKMi through of combining hisPi,⋆,⋆
with ISCi,⋆,⋆ after, thei− th composer assesses the fitness of each solution into
KMi. And 2)creating a new solution, in this sub phase, each composer generate
a new solution based on both hisKMi and the algorithm 7.

The strategy of MMC for generating a new solution is used, in the step from
8 to 12 of the algorithm 6, to create a input for the strategy of maintaining arc
consistency, which is contained in steps from 16 to 41.
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Algorithm 7: Creating a new solution
Input: KMi, ifg, cfg,A, p
Output: newsolution

1 begin
2 for each composer in societydo
3 FKM = ∅
4 FKM1,: is the best solution content inKMi

5 FKM2,: is a solution randomly take ofKMi with base infitness(KMi)
6 FKM1,: should be different toFKM2,:

7 FKM3,: is a solution arbitrarily take ofKMi

8 if rand1 ≤ (1− ifg) then
9 base is generated trough algorithm 8

10 else
11 base is generated trough algorithm 5, butapselectionl

assignedprobabilityl,2
12 end
13 α←zeros matrix (K × |V |)
14 newsolution = ∅
15 β ← zeros vector (1×K)
16 for l = 1 : |V | do
17 a1 ← base1,l
18 if (αa1,l = 0)

∧

(β1,a1
< p) then

19 newsolution 1,l ← a1
20 αa1,: = αa1,: +Aa1,:

21 β1,a1
= β1,a1

+ 1

22 end
23 end
24 α1 = max{maxk=1,2,...,K;∀l(akl)}

25 α =
{⌈

αk,l

α1

⌉}

∀l = 1, . . . , |V | y k = 1, . . . ,K

26 for k = 1 : K do
27 while β1,k < p do
28 for l = 1 : |V | do

29 visit1,l =

{

1 if newsolution 1,l 6= 0
0 if newsolution 1,l = 0

30 end

31 ψ ←−
{⌈

αk,l+visit1,l
2

⌉}

32 if
∑|V |

l=1 ψ1,l < |V | then
33 γ is the index of a cell with value equal zero into vectorαk,:

newsolution 1,γ ← k

34 αk,: = αk,: +Aγ,:

35 β1,k = β1,k + 1

36 α =
{⌈

αl,k

α1

⌉}

∀l = 1, . . . , |V | y k = 1, . . . ,K

37 else
38 β1,k = β1,k + 1
39 end
40 end
41 end
42 Call algorithm 9 onnewsolution

43 end
44 end
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Algorithm 8: Creating a base

Input: KMi, cfg,K,|V |
Output: base

1 begin
2 for l = 1 : |V | do
3 MH1,l = max(KMi,⋆,l)
4 MH2,l = min(KMi,⋆,l)

5 end
6 base = ∅
7 for l = 1 : |V | do
8 if rand2 < (1− cfg) then
9 a1 = rand

10 if a1 ≤ 1
3 then

11 basel = FKM1,l

12 else
13 if a2 ≤ 2

3 then
14 basel = FKM2,l

15 else
16 basel = FKM3,l

17 end
18 end
19 else
20 a2 = rand
21 if a1 ≤ 1

2 then
22 if a2 ≤ 1

2 then
23 basel = MH1,l

24 else
25 basel = MH2,l

26 end
27 else
28 basel = 1 + round(rand ∗ (K − 1))
29 end
30 end
31 end
32 end
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Algorithm 9: Making feasible tonewsolution
Input: newsolution,|V |, K
Output: newsolution

1 begin
2 a is a zero vector (1×K)
3 for l = 1 : |V | do
4 if newsolution 1,l = 0 then
5 newsolution 1,l = round (1 + rand ∗ (K − 1))
6 end
7 a1,newsolution 1,l

= a1,newsolution 1,l
+ 1

8 end
9 for k = 1 : K do

10 if a1,k = 0 then
11 a2 ← round(1 + rand(|V |+ 1))
12 a3 ← newsolution 1,a2 newsolution 1,a2 ← k
13 a1,k = a1,k + 1
14 a1,a3 = a1a3 − 11

15 end
16 end
17 end

3.4 Updating thePi,⋆,⋆

In this phase, each composer makes a decision on either replacing or not the
worst tune (tuneworst) in his score matrixPi,⋆,⋆ with newsolution. The deci-
sion is based on the value of the objective function, so if the value of objective
function of thenewsolution is better than the value of objective function of the
tuneworst, thennewsolution replaces thetuneworst in Pi,⋆,⋆. Algorithm 10 illus-
trates the procedure used for this purpose.

3.5 Building the set of solutions

In this phase, the MP-MMC selects the melody contained in artwork of every
composer that achieves the best objective function value. The corresponding
routine is shown in Algorithm 11.
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Algorithm 10: Updating thePi,⋆,⋆
Input: newsolution, Pi,⋆,⋆
Output: Pi,⋆,⋆

1 begin
2 tuneworst is the worst solution intoPi,⋆,⋆ depend on objective

function
3 R(C)worst is value of objective function of thetuneworst
4 C(C)worst is the number of constrained no met bytuneworst
5 T (C)worst is the number edge contend bothtuneworst andT
6 R(C)new is value of objective function of thenewsolution
7 C(C)new is the number of constrained no met bynewsolution
8 T (C)newt is the number edge contend bothnewsolution andT
9 if C(C)new ≤ C(C)worst then

10 if R(C)new ≤ R(C)worst then
11 if R(C)new < R(C)worst then
12 Replacing of thetuneworst for newsolution in Pi,⋆,⋆
13 else
14 if T (C)new > T (C)worst then
15 Replacing of thetuneworst for newsolution in Pi,⋆,⋆
16 end
17 end
18 end
19 end
20 end

Algorithm 11: Building the set of solutions
Input: P⋆,⋆,⋆,Nc
Output: Solutions

1 begin
2 Solutions← ∅ for i : 1 : Nc do
3 Solutioni ← is the element, withinPi, ⋆, ⋆ with the best value

based onC(C), R(C) andT (C)
4 end
5 end
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4 Experimental methodology and test problem

This section presents the computational experiments and associated results ob-
tained by theMP-MMC algorithm on a set of instances of the robust graph
colouring problem (RGCP), the general structure of the RGCP is shown in
Equation (2).

4.1 Test problems

The characteristics of the instances used in this work are shown in the table 1,
wheren is the number of vertices in the graph andk is the number of colors.
This instances were propose in [31] and these have been used in several works
e.g: [31, 33, 17].

Table 1: Instances of the RGCP.

Gn,0,5 n k Gn,0,5 n k
al(20) 20 7 al(60) 60 20
al(20) 20 8 al(60) 60 21
al(30) 30 10 al(70) 70 24
al(30) 30 11 al(70) 70 25
al(40) 40 14 al(80) 80 27
al(40) 40 15 al(80) 80 28
al(50) 50 17 al(90) 90 30
al(50) 60 18 al(90) 90 31

4.2 Design of the experimental test

The experiment was designed in order to analyze the performance of the MP-
MMC on sixteen instances of the RCPs.

Taking into account the stochastic nature of the MP-MMC algorithm, 20
independent replications were performed for each instance. The time runand
value of objective function were registered for each replication. Then for each
instance and both objective functions the maximum, minimum, variance and
standard deviation values were calculated.

The numerical result obtained by our hybrid was compared versus the results
get by following algorithms:

• Tabu Search (TS) [9].
• Greedy randomized adaptive search procedure (GRASP) [8].
• Scatter Search (SS) [10, 24].
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The information of these algorithms on the selected test set was taken from
[12, 17].

With the aim of comparing the results obtained by the above mentioned
metaheuristics on each instance, the results were normalized through the fol-
lowing equation:

f(xnormalized−α) =
f(xmethod−α)− f(x⋆)

f(xworst inβ)− f(x⋆)
(3)

where:f(x⋆) is the value of the objective function at the global optimal point,
f(xmethod−α) is the average value of the objective function found by metaheuris-
tic α, f(xworst inβ) is the worst average of the objective function found by
metaheuristics on test caseβ , andf(xnormalized−α) is the normalized value of
the objective function found by metaheuristicα.

The value off(xnormalized−α) ranges from 0 to 1. Iff(xnormalized−α)
is close to 0, the value off(xmethod−α) is near tof(x⋆). If f(xnormalized−α)
is close to 1, the value off(xmethod−α) is far fromf(x⋆).

Furthermore, a non-parametric Wilcoxon rank sum test was applied to the
results obtained byMMC and the other tested heuristic algorithms. The null
hypothesis is that data from two solution sets are independent: if the value re-
turned by the test ish = 1, the null hypothesis is rejected with a 5% significance
level, whileh = 0 indicates a failure to reject the null hypothesis with a 5%
significance level. Parametersp (standing for the symmetry and mean of the
distribution) andh (which is the hypothesis test result) were computed from this
statistical test.

4.3 Parameter setting for theMP-MMC hybrid

In the first tuning, an arbitrary setθ of parameters was fixed, later parame-
tersmaxarrangement, Nc andNs were adjusted with the brute-force approach
[3]. TheNc is expressed as a percentageλ of the |V | (see equation 4) . The
maxarrangement were determined in function of theNs through equation 5. The
setθ obtained in this phase, was used as input for tuning of theifg, thecfg and
the ifcla parameters with a technique semi-factorial experimental design.

Nc = λ ∗ |V | (4)

max
arrangement

= Ns ∗ κ. (5)
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Table 2: Parameter settings of MP-MMC.

Parameter value
κ 1000
λ 0.3
Ns 5
ifg 0.2
cfg 0.1
fcla 0.1

In the semi-factorial experimental design, combinations generated by val-
uesifg : {0.1, 0.2, 0.3, 0.4, 0.5}, cfg : {0.0, 0.1, 0.2, 0.3, 0.4, 0.5} andcfla :
{0.0, 0.1, 0.2, 0.3, 0.4, 0.5} were tested, so 180 experiment were tried out. Five
repetitions were made for each experiment. Also in each repetition, the value of
objective function (f(x)) was registered. Then, the mean squared error (MSE)
was calculated, through equation 6, for each repetition:

MSEi =
5

∑

j=1

(f(x)− ¯f(x))2

5
. (6)

The minimum value of theMSEwas 0.035, which was get withifg = 0.2,
cfg = 0.1 andcfla = 0.1. In contrast, the maximum value ofMSEwas 32.96,
which was found withifg = 0.3, cfg = 0.5 andcfla = 0.2. In Table 2, the
parameter setting is shown.

4.4 Experimental results and discussion

The MP-MMC was implemented in Matlab R2010a on a MacBookAir process-
ing unit 1.8 GHz intel core i7.

The results obtained are structured in Table 3, which synthesize, for each
instance the best (xbest), the worst (xworst), the mean̄x, the variances2 and
standard deviations, computed over 20 runs of the best objective function found
by MP-MMC.

In Table 4 are shown 95% confidence intervals determined with bootstrap
method on the mean.

A comparative of the best results obtained byMMC, GRASP, TSandSSis
shown in Table 5 and Table 6 .
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Table 3: Results obtained by MP-MMC.

n k xbest xworst x̄ s2 s

20 7 6.9046 7.3472 7.0030 0.0136 0.1167
20 8 4.6934 4.8391 4.7379 0.0036 0.0603
30 10 7.5749 11.041 9.2173 1.1238 1.0601
30 11 5.889 6.6233 6.1184 0.0370 0.1925
40 14 7.149 8.3658 7.5801 0.1132 0.3364
40 15 5.6708 6.747 6.1286 0.1152 0.3395
50 17 8.8613 10.781 9.4673 0.2331 0.4828
50 18 7.0506 8.7703 7.6847 0.1946 0.4411
60 20 9.6732 12.033 10.7683 0.4981 0.7058
60 21 7.5521 9.1749 8.3152 0.2065 0.4544
70 24 10.395 17.16 11.5579 2.0758 1.4408
70 25 8.773 11.581 9.8447 0.3721 0.6100
80 27 10.884 20.375 13.8058 5.5948 2.3653
80 28 9.8818 19.367 11.4210 4.0702 2.01747
90 30 12.744 22.772 16.1659 6.1485 2.4796
90 31 11.702 20.925 14.3109 4.7573 2.1811
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Table 4: Results boot strap test withα = 0.05.

n ks Lower limit Upper limit
20 7 6.9561 7.0451
20 8 4.7158 4.7684
30 10 8.7883 9.6566
30 11 8.0561 8.3987
40 14 7.4516 7.7449
40 15 5.9688 6.2570
50 17 9.2542 9.6508
50 18 7.4800 7.8490
60 20 10.4617 11.0847
60 21 8.1183 8.5176
70 24 11.1014 12.3329
70 25 9.6131 10.1025
80 27 12.7755 14.6737
80 28 10.7909 12.5324
90 30 15.0804 17.2922
90 31 13.3681 15.2844

Based on the previous result, we can say that MP-MMC generates the best
results in 31.25 % of the instances. Also in 62.5% of the instances the MP-MMC
produced the second bests results. Our heuristic is better thanTSandGRASPin
the most cases.

The results of the time run of the MP-MMC are shown in the Table 7.
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Table 5: Comparative of results obtained by heuristics.

n k MMC TS GRASP SS
20 7 6.9046 7.097 7.1423 6.9046
20 8 4.6934 4.771 4.6934 4.6934
30 10 7.5749 8.0623 7.5749 7.5749
30 11 5.889 6.0565 5.9318 5.889
40 14 7.149 7.1709 7.395 7.0837
40 15 5.6708 5.8173 6.3117 5.6708
50 17 8.8613 9.8259 8.9531 8.2587
50 18 7.0506 7.4966 7.1464 6.7164
60 20 9.6732 9.8331 9.9687 8.8676
60 21 7.5521 8.2181 8.143 7.238
70 24 10.395 11.1307 11.2388 9.2634
70 25 8.773 9.5478 9.2145 7.7048
80 27 10.884 11.1946 11.7512 9.9835
80 28 9.8818 10.5845 10.2631 8.5961
90 30 12.744 12.2832 13.4919 10.8911
90 31 11.702 11.3699 11.506 9.5008

Table 6: Comparative of normalizing results.

Instances
n 20 20 30 30 40 40 50 50 60 60 70 70 80 80 90 90
k 7 8 10 11 14 15 17 18 20 21 24 25 27 28 30 31
1 3 2 2 2 3 3 2 2 3 2 3 2 3 2 3 1

0.9 2 3 2 3 3
0.8 2 3 2
0.7 1 2 1
0.6 3 1 1 1
0.5 1 2
0.4 1,3 1
0.3 3 2 1
0.2 1 2
0.1
0 1 3,1,4 3,1,4 1,4 4 1,4 4 4 4 4 4 4 4 4 4 4

where: 1 is MMC; 2 is TS; 3 is GRASP; 4 is SS.
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Table 7: Time run obtained by MP-MMC.

n k timebest timeworst mean time s2 s

20 7 38.86 41.99 40.9195 0.5446 0.73796
20 8 37.46 42.41 38.8305 1.6859 1.2984
30 10 116.18 124.19 121.491 4.4845 2.1177
30 11 107.27 117.93 111.567 15.3845 3.9223
40 14 236.07 280.25 255.898 180.4200 13.4321
40 15 240.22 270.23 251.73 35.6636 5.971903
50 17 481.05 561.13 509.119 906.7228 30.1118
50 18 483.49 539.71 494.233 145.0870 12.0452
60 20 542.09 646.01 581.0425 1103.0155 33.2117
60 21 544.19 574.51 556.8515 67.1736 8.1960
70 24 1455.4 1710.4 1531.145 6033.4331 77.6752
70 25 1470 1721 1536.795 2370.7847 48.6907
80 27 1457 1731.8 1572.52 6668.0122 81.6579
80 28 1469.9 1732.2 1549.285 4006.8401 63.2996
90 30 3536 3843.9 3674.49 6948.9725 83.3605
90 31 2312 2672.2 2412.665 7383.1182 85.9251
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5 Conclusions

In this paper, a hybrid between mathematical programming techniques and meta-
heuristics was presented, which was called MP-MMC. The numerical results
illustrate that the MP-MMC has a higher capability to solve instances of the
RCPs, so the MMC generates the best or second best results in 93.75% ofthe test
instances.

Future works might focus on extending the use of the MP-MMC to solve
larger instances of the RGCP. Also we must improve the structure of the MP-
MMC for making it more effective.
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