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Abstract

Within the context of a latent class model with manifest bjneari-
ables, we propose an alternative method that solves thdepnotf esti-
mating empirical distribution with sparse contingencyléaband the chi-
square approximation for goodness-of-fit will not be valMe analyze
sparse binary data, where there are many response patithingry small
expected frequencies in several data sets varying in dedrggarseness
from 1 to 5 definedi = n/2? = n/R is a factor that is mentioned in
almost all prior literature as being an important determira how well
the distribution is represented by the chi-squared.Thpgwed approach
produced results that were valid and reliable under the ioed prob-
lematic data conditions. Results from the proposal presecompare the
rates of Type | for traditional goodness-of-fit tests. Wealsow that with
data densityl < 5, Pearson’s statisti€y?) should not be used to select
latent class models using the Patterns Method, given thshés the prob-
ability of Type | error being greater théi¥%. By comparing the Patterns
Method and the Parametric Bootstrap for data denkity2, we show that
the Patterns Method has more accurate Type | error probabisiince the
likelihood ratio, Read-Cressie and Freeman-Tukey siedistfford values
of a < 0.05. In contrast, the Parametric Bootstrap provides valudsdgd
statistics that surpasss.

Keywords: sparse data; latent class; goodness-of-fit; binary data.

Resumen

En el contexto de modelos de clases latentes con variableifiestas
binarias, se propone un método alternativo para resolveroblema de
la estimacién de la distribucion empirica con tablas deingatcias es-
casas, donde la aproximacion de los estadisticos de bordaidiste por
la distribucién Chi-Cuadrada no es valida. Se analiza dait@gios esca-
sos, donde muchos patrones de respuesta que tienen frecueseradas
pequefas, en conjuntos de datos con grados de datos eseakas %l
donded = n/2P = n/R es un factor es mencionado en la literatura como
determinante de la bondad de ajuste a la distribucion Chdada. La
propuesta presenta resultados validos y confiables en tactanes de
los datos mencionadas. Para los resultados se presergaéaseor tipo
| para las pruebas tradiciones de bondad de ajuste. Tambidusstra
que para niveles de densidad de datos 5, el estadistico Pearsdy?)
no es el apropiado para seleccionar modelos de clasesskitaiiizando
el Método de Patrones, dado que presenta probabilidad oledertipo |
mas grandes que 5%. Al comparar el Método de Patrones y esBaot
Paramétrico para la densiddd-= 2, se muestra que el Método de Patrones
tiene probabilidades de error de tipo | menores de 5% en taslisticos
de razon de verosimilitud, Read-Cressie y Freeman-Tukeycdatraste,
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el Bootstrap Paramétrico produce valores en estos estadigtie superan
un 5%.

Palabras clave:datos escasos; clases latentes; bondad de ajuste; datos binarios.

Mathematics Subject Classification:62H30, 62H17.

1 Introduction

Latent class analysis is a statistical method for analyzing and understanding
tivariate categorical data. These methods have been used extensitfedysio-

cial sciences to model the heterogeneity of manifest variables in a multivariate
sense; they can be used to identify unobserved subgroups within &popu
from multivariate categorical and/or continuous observed variablestiyat-

ing the characteristics of these latent clusters, returning the probabilitgdbht
subject belongs to each group and identifying the variables that best wer
distinguish among classes [3].

In theory, ap-value value for the goodness-of-fit statistic (GFS) can be ob-
tained by comparing the statistics to the reference chi-square theoretal pr
ability distribution corresponding to the degrees of freedom in the model. The
assumption is valid based on the Integral Theorem of De Moivre-Laphaoen
both the observed frequencies of the different response pattedrth@asample
size are large.ff, — oco,n — 00).

This is a special case of the central limit theorem. It states that the binomial
distribution of the number of successesrinndependent Bernoulli trials with
a probabilityp of success in each trial approximates a normal distribution with
meannp and standard deviatiopnpgq if n is very large and some conditions are
satisfied[[26].

Statistical inference problems caused by sparsity of contingency talgles ar
widely discussed in the literature. The problem arises because the passible
crease in Type | error rates of goodness-of-fit statistics do not magthetk-
pected rates under the chi-square approximalion [6]. In particulaisespass is
a function of the sample size and the size of the contingency table (or the total
of the response patternk, = 2P). The ratiod = n/R is used to measure the
amount of spareness present in a table. In this sense, Larntz [24¢dHbat
whend is less than 5, the distribution of tife? test statistic is not well approxi-
mated by the chi-square distribution, and instead is unknown, making it dtifficu
to test the absolute fit of a model. Accordingly, small expected frequendies
provide high values in the GFS and will be more likely to lead us to reject the
model even though it is appropriate for describing the data set. Furthermor
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sparse data have an adverse effect on goodness-of-fit testy asathawvalidate
using they? distribution. Many suggestions have been given on how to measure
sparseness in a multi-way contingency table. But, to date, no univerfasil de
tion of sparseness has been adopted. The most widely used rules ofahaitob
consider the percentage of expected cell frequencies smaller thanairted.,
50r10[2[7[ 18,15, 31, 19! 9] and the percentage of observedraguencies.

Other contributions to the study of the sparse contingency tables ares-Baye
ian modeling of temporal dependence in large sparse contingency tabjes [18
nonparametric criteria for sparse contingency tahles [30], goodfdiistests
for sparse nominal data based on grouping [28], accurate directideagénce
for vector parameters [10], chi-square orthogonal componentssesaing good-
ness-of-fit [24], profile statistics for sparse contingency tables ruRdesson
sampling [27], the measurement of model fit for sparse categorical [@iZ}a [
and modeling and measuring association for ordinal data [14].

We propose an alternative method to calculate the empirical probability dis-
tribution of the GFS when sparseness is extreme and here we refer to this as
the Patterns Method. The structure of this article is as follows. In Section 2,
we present the basic concepts related to Latent Class Models. In Sectien 3
sparse data problem and the statistical tests that assess the goodiitesistod
latent class model are presented. In Section 4, we present the PatetimsdM
The design of the study is described in Section 5. Section 6 includes thesresu
of the Pattern Method regarding probability of Type | error. Section €riless
the construction of the tables of critical values for the Pattern Method. Finally
Section 8 presents the key results of this study.

2 Latent class models

The latent class model (LCM) is a multivariate statistical technique that allows
study of the existence of one (or several) latent class(es) by meansebfod
manifest variables observed, and makes it possible to define, from theses,
a classification or typology of the individuals analyzed. LCM was introduce
by Lazarsfeld and Henry [22], who used the technique as a tool fitalitg
typologies (or clustering) based on dichotomous observed variables.

In Latent Class analysis, the measurement levels of both the manifest vari-
ables and the latent variable are categorical. Each latent class is chiaeathy
a pattern of probabilities of response for the manifest variables. A pkaticase
of LCM occurs when the manifest variables are binary; that is, thererdyewo
levels of response: 0 and 1. Formally we have a collecor= (X, - - -, X))
of binary indicators for each individual, these being the presencesanak of
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particular events. LeéX' be a vector o binary manifest variables which form a
p—dimensional contingency table. Let us assume that theseiables are con-
sidered to be indicators of a latent variablavith C' categories or latent classes.
The LCM describing this situation is given by (x) = Ele 7x,y (X, c) where
mxy (X,¢) = P(X = X,Y = ¢) is the overall likelihood that a randomly se-
lected individual will have a response= (X;,Xz,- - ,X,) and is in the latent
classc.

We shall assume conditional independence; therefore, the overall tikelh
follow a Bernoulli distributionr x, /y-(.) (X;) = o (1 — mc)l_"i wherer;,. is the
conditional probability of obtaining a positive response in Mevariable for an
individual of the latent class. In practice, for each response pattern this set
of probabilities is inspected and the individual is assigned to the latent class in
which this probability is greatest (modal assignment).

The estimation for item parameters and sizes of latent classes are estimated
in the expectation-maximization (EM) algorithm. The EM is a general method
for maximum likelihood estimation in a missing data setting and convergence is
checked by determining the relative change in the log-likelihood of sulesgqu
iterations.The usual procedure to decide on the number of classes hgjins
a small number of classes and then checks whether an additional cldds cou
improve the fit significantly.

3 Sparse contingency tables

The statistical tests that assess the goodness-of-fit of the model to thealata a
based on null hypotheses derived from the theoretical models. Fayociai

data, significance tests normally entail a comparison between the obsarred a
expected frequencies that are derived by substituting maximume-likelihaied es
mates for parameters in the theoretical model. The three most commonly used
GFS for goodness-of-fit testing of a latent class model are: the Realso
squared statisticy?), the likelihood ratio statistic(f?) and the Freeman-Tukey
statistic ¢"T"). All of the above statistics are embedded in a family of power
divergence statistics thoroughly discussed by Cressie and Read {@88xulti-
nomial sampling they are obtained using the following formula

A
RC(\) = 2 i f Fo )y (1)
)\ ()\ + 1) h=1 o th

where thefy, are the observed cell frequencig%h are the expected cell fre-
guencies and R is the number of cells. The special cases of powegetiver
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statistics are Pearson chi-squared statistic §put 1) and the likelihood ratio
statistic (the limit as\ — 0).

These statistical tests are asymptoticalfy distributed under the null hy-
pothesis in large samples, with a degree of freedom specific for the model.
The reference chi-square theoretical probability distribution for statigésts
is based on an asymptotic result under the assumption that each expdicted ce
count is large. In fact, thg? approximation can also break down when the table
is small but contains very large as well as small cell counts. Neverthéléss,
number of manifest variables afm the number of categories of each variable
are large, with a small sample size, the multiay contingency table of the ob-
served variables yields sparse data. Suppose that data are availabte o2
dichotomous variables (each variable can take only the values 0 and wjtand
a sample size the = 500 all 22 = 4096 number of possible response pat-
terns. On average, the expected frequency will be too sipdle2) for the x>
approximation to sampling distribution to be valid.

Sparseness is not restricted to the tables with smaller sample sizes alone, but
could also occur with large sample sizes; this is due to the high concentration of
frequencies in certain cells, with poor frequencies or none at all in sitheis
clear that for such a sparse table an approximation with the asymptotic result is
not appropriate.

The distorting effect of sparseness on the Chi-square test is wellrkreme
for example, Mielker and Berry [23]. Among the order statistics, the likelihoo
ratio (G?) appears to be the most susceptible to the effects of sparseness for the
one-factor model with dichotomous variables|[29]. In this sense too, mereo
Dayton [11] provides computational details for Pearsgi’'sthe likelihood ratio
(G?) and the Read-Cressie statistie({), concluding that the RC is the best op-
tion when there are small expected frequencies. Bartholomew and Tzamhour
[5] proposed alternative ways for assessing the goodness-dftiiié dtatent trait
model for binary responses based on Monte Carlo methods and remidigsis.

This problem can be overcome using parametric bootstrap proceduesto g
erate an empirical distribution of the model fit statistic and use this distribution
to test the fit statistic from the original datal[8/ 1| 16]. In this sense, Tallesad
Mooijaart [32] reported that the validity of the bootstrap is associated with the
statistic used in the hypothesis test, because there are problems when estimating
Type | error through thg? andG? statistics. Based on a Monte Carlo study, von
Davier (1997) concluded that bootstrap procedures work adequateiye x>
statistic and theRC fit statistic [34].
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4 The patterns method

The parametric bootstrap is the most commonly used method for categorical
data whenever the frequency table to be analyzed is sparse [35]. vElowe
this requires both knowledge of advanced statistics and computationallyentens
methods because to obtain a stglshealue several hundred bootstrap resamples
are needed for each model the researcher is interested in comparirigis In
sense, there could be problems when certain parameter estimates in the para-
metric bootstrap are on the boundary of the parameter space, becassethe
pling is taken from the empirical distribution; a data pattern that is not obderve
in the sample has probability zero of being selected into the bootstrap sam-
ples and, consequently the estimated distribution may be too far from the true
distribution [33].

We propose a new method, namely the Patterns Method, which solves the
problems of the parametric bootstrap. The Patterns Method is an alternative
for the latent class model diagnostic when the data are sparse. The lesic id
behind this method is to take the total number of patterns posgible- 27)
as the population and apply simple random sampling with replacement in order
to simulate samples of similar size to the original sample for constructing the
empirical probability distribution of the GFS.

This focus of the Patterns Method differs from previous ones, sutheas
non-parametric bootstrap, which builds the unknown probability distribution o
the statistic by resampling of the original sample. Likewise, the Patterns Method
differs from the parametric bootstrap, which uses the parameters of ti¢ late
class model to reproduce new data sets. A basic feature of the PattetimsdMe
is the substitution of the underlying function of the unknown probability dis-
tribution F(X) by an estimator. Sampling with replacement of the response
patterns is used to obtain a large number of random samples to perform the es
timation. The empirical probability distributiof’ (X*), obtained from the re-
sponse patterns, assigns a probabilityl pR to each response pattexp, for
r=1,2,---, R, whereR is the total number of patterig2 = 27) for p binary
manifest variables.

The number of all the possible response pattefisi§ used as a starting
point for simulation. Thus, the probability of random selection of a pattern is
1/R. By iterating this process times, we obtain a set of data that form the
so-called random pattern sample. Thas= (z7, 3, , ;) represents a re-
sponse pattern that will be given by the mati: = [x], x5 - - - X]. Following
this, we obtainA random pattern samples (p.j. A=500), until they are considered

acceptable to estimate the empirical probability distribution.
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Accordingly, although each random pattern sample will have the same num-
ber of elements as the original sample and by random sampling with replace-
ment, that sample may contain most of the patterns of the original sample, to-
gether with other new ones that are part of the population of patterns énat w
not observed in data acquisition. Thus, the proportion of responsensatte
each resample is increased above the levels observed in the original saitiple
the same amount of information to estimate the empirical distribution of GFS.

For each of these random samples of patterns, the GFS can be calculated,
because the latent class model assumption is accepted as appropriate for th
original sample data. In order to differentiate the goodness-of-fit statisdik
culated on the values of the original samflland the goodness-of-fit statistics
for samplea, the latter will be denoted ﬁ After selecting random samples
of responses patterns, it is possible to estimate the empirical probability distribu
tion of é;j, assigning a probability df/ A to each value of the statistic calculated:
05,05, .67,

This distribution is thus converted into an immediate estimator for the dis-
tribution functionf and can be used to test the validity of the latent class model
hypothesized to describe the original data. In summary, the Patterns Msthod
executed in the following procedure for assessing the goodnesisebiaflatent
class model for binary data:

1. Fit model to the observed data and calculate the goodness-of-fit statistics
(9). This is called the original sample.

2. Generate one sample of the same size as the original data by simulating
from possible response patterns.

3. Fita model with the same structure as in Step 1. and calculate the goodness-
of-fit statistics.

4. Repeat Steps 2 and 3 a great many times (é¢.g- 500) to approximate
the distribution of the GFS, assuming that the fitted model is correct.

5. Reject the model if thp-value(pv) is larger than the significance

From this research, calculation of the level of significance was based on
estimating the sampling distribution of the GFS under the hypothetical latent
class model. I is the value obtained in the original sample, the significance
test will be to calculate how unusuéis with respect to the sampling distribution
of §*. Thus, the significance level of the test statistic is,

Number of times that[é* > é} +1

pU:P[é*Zé}: A5 : (2)
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The decision rule regarding the hypothetical model will be to reject the latent
class model ipv < «, wherea is the significance level setpriori. Thus, the
one-sided significance level is simply the proportion of simulated samples in
which the value of* is greater than or equal to the estimateith the original
sample. Furthermore, a small implies that the data of the original sample are
implausible (or have a small probability of occurring) under the null hymithe

In sum, the proposed Patterns Method aims to estimate the empirical proba-
bility distribution with a view to drawing inferences about the appropriate latent
class model for the data of the original sample, although the mode of action
is different from the parametric and non-parametric bootstrap technidugs
thermore, it is worth mentioning that the Patterns Method does not rely on the
assumption that the sample data are drawn from a given probability distribution
or on the assumption that the GFS hasg@rtheoretical probability distribution.

5 Design of the study

In this section, we apply the Patterns Method to several data sets varyirairin th
degree of sparseness. The ratio- n/2P = n/R is used to measure the amount

of sparseness present in a table, wheis the number of manifest variables,

n is the size of the original sample am®l = 2P is the number of response
patterns; random samples were simulated, with sizes giver.by k = R, for
k=1,---,5. These degrees of sparseness in the data are the major problems to
justify the asymptotic approximation of the GFS to fffetheoretical distribution

and have been used in previous investigations similar to the present @je [4,

We then simulated binary data corresponding to different sample sizes and,
therefore, with varying degrees of density (or sparseness), whitlfaistor de-
terminant on how well the distribution is represented bytheSpecifically, the
number of binary manifest variables varied from 5 to 9 and models with two to
five latent classes were examined (original sample).

The detail of the simulated data sets is shown in Table 1. For example, for 7
binary manifest variables we simulated samples that had 2, 3 and 4 lateesclass
As may be seen, the size of the samptes, - - ,n5, were 128, 256, 384, 512
and 640, respectively.

The main goal of the simulation study presented here is to establish whether
the Patterns Method can be used under different sparseness canditioor-
der to do so, four frequently used goodness-of-fit statistics wersechéor
this study, namely the likelihood-rat{@+?), Pearson’$y?), the Freeman-Tukey
(FT) and the Read-Cress{&(C') statistic. The verification process of the sim-
ulation is intended to show that the simulated model is confirmed as valid by the
method of diagnosis.
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Table 1: Sizes of samples associated with the degrees of densiteafdta according
to the number of manifest variables and latent classes.

Manifest variableg Latent Class Sizes of samples simulated
P C ny n2 n3 ng4 ns
5 2
5 3 32 64 96 128 160
6 2
6 3 64 128 192 256 320
7 2
7 3 128 256 384 512 640
7 4
8 2
8 3 256 512 768 1024 1280
8 4
9 2
9 3 512 1024 1536 2048 2560
9 4

The set up of the simulation study was as follows. We present illustrations
using several simulated data sets varying in their degree of sparseitiesisen
CMABOOQOT —a computational program developed usMTLAB language
designed by the author of this article. It was designed in three stages: in the
first stage, the original sample is simulated; in the second one, the pattern sam-
ples are simulated, and in the third phase, the Type | Error is calculated @e., th
probability of incorrectly rejecting a true model). This implementation of com-
putational algorithms proves to be a complex task, especially when it is aegess
to process mathematical operations with hefty computational requirements.

The research methodology consisted first of assuming a latent class model
in which the overall and conditional probabilities are known, after whigh, b
means of aMATLAB application, a random sample is built. We shall call this
the original sample. For the second step, in order to analyze the effeztvef
the method as regards correct determination of the model with which the data of
the original sample were generated, we simulated 500 pattern samples. For
each, we used a decision criterion or cut-off valué%f to determine how many
values of the GFS are lower than the cut-off point and determine norticgjec
of the null hypothesis (the number of latent classes of the original samiple).
the third step the simulation experiment of tHe= 500 pattern samples was
repeatedl00 times, calculating the probability of Type | Errder), which is
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represented by the proportion of repeats in which the decision is the @atorr
one, rejection of the null hypothesis being correct.

In sum, to carry out the research, we needed 1,500,000 replications of th
experiment, which involved more th&n500 processing hours of) computers
carried out simultaneously, with the following features: Intel (R) CorelT
2.40 GHz 4 GB RAM PC.

6 Results

This section presents summaries from the simulation study. We then analyzed
the results of the simulations in terms of the probability of Type | error. The
validation process consisted of ascertaining that the Patterns Methodwhad lo
« probabilities for the four goodness-of-fit statistics considered uniffereht
sparseness conditiong, = 1,2,---,5. We need consider only small values

of d associated with distribution of the GFS which do not follow a probabil-
ity chi-square distribution. Furthermore, these represent the degrdessity
frequently studied by researchers to evaluate latent class models.

The most critical situation arises when the density of the data is very low
(d = 1), meaning that most of the response patterns are not observed. As can
be seen Table 2 shows that the most appropriate GFS proves to be the ¢ideliho
ratio statistic G2), followed by Read-CressieR(). Similarly, the Freeman-
Tukey statistic £'7°) has low probabilities of in the models examined, except
when there are 6 manifest variables and three latent classes, for wkidh 15
and the model for 5 manifest variables and two latent classes, wher®.07.
Hence, the Pearson statisfig?) provides more unfavorable values, for some
of the models examined were greater tlhéh For example, for 9 variables and
two latent classes the probability of Type | erronis= 0.23.

Also, for a density of the original samples £ 2) the results are very similar
in contrast to the above analysis. The likelihood ratio statistic gives probabilitie
of o mostly of 0. TheRC and F'T" statistics havex values lower than 0.05,
with the exception of the model for 5 manifest variables and two latent classes
where withRC we haver = 0.06. The Pearson statistig:?) continued to give
unsatisfactory results since theprobabilities were greater than expected.

In this same setting, for the density of data= 3 the results show a similar
trend to the two previous cases (Tdble 3). THeandRC statistics haver values
lower than 0.05, except for the model with 6 manifest variables and two latent
classes, for which, with th&C' statistic we haver = 0.06. Freeman-Tukey
(FT) gave acceptable values(a < 0.05), except for the model with 7 variables
and 4 latent classes, where we have- 0.09. Also, for 5 and 6 variables, both
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Table 2: Probabilities of Type | error according to the number of mestivariables and
latent classes for a data density ofrl; = R = 27).

Manifest variableg LatentClass G*> x> FT RC
5 2 0.00 0.02 0.07 0.00
5 3 0.01 0.03 0.01 0.02
6 2 0.00 0.03 0.00 o0.01
6 3 0.00 0.06 0.15 0.01
7 2 0.00 0.12 0.00 0.02
7 3 0.00 0.06 0.01 0.00
7 4 0.00 0.01 0.00 0.00
8 2 0.00 0.17 0.00 0.01
8 3 0.00 0.08 0.00 o0.01
8 4 0.00 0.04 0.00 o0.00
9 2 0.00 0.23 0.00 o0.00
9 3 0.00 0.10 0.00 o0.01
9 4 0.00 0.10 0.00 o0.00
9 5 0.00 0.11 0.00 o0.00

with 3 classes, the values are 0.06. The Pearson stati§fi¢) has type | error
probabilities greater than 0.05 only for the models that have 5 manifest leajab
with two and three latent classas< 0.05.

It was found that the probabilities of Typed.) error tend to vary when the
value of the degree of density is= 4. The Read-Cressie statisti&() and
the likelihood ratio statistiog?) are those providing the most acceptable results,
that is,« values less than%, except for the model with 6 variables and 3 latent
classes, where for both statistics we have= 0.08. In nine out of fourteen
models studied, the Freeman-Tukey statistic is no longer effective since it ha
probabilities greater tha®.05, the most critical being the models that have 3
and 4 latent classes. Pearson’s stati(sy'%) only provides acceptable values of
a < 0.05 in two simulated models, for 5 variables and 2 latent classes, as well
as that composed of 9 variables and 3 latent classes.

The probability of Type | error when the degree of sparsenessds 5
(n/2P = 5) (Table[4) shows the most acceptable statistics that give the proba-
bilities of « in Read-CressieRC) and in the likelihood ratid G?) because the
most frequent values of are lower than 0.05. The Pearson stati$ti¢) pro-
vides values that are not appropriate for use in the latent class modatesiiag
for sparse tables by means of the Patterns Method; only with the model for 5
variables and 2 latent classes do we have a probability0.05. The results for
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Table 3: Probabilities of Type | error according to the number of mestivariables and
latent classes for a data density ofig = 3 = 2P).

Manifest variableg LatentClass G*> x> FT RC
5 2 0.00 0.05 0.00 0.02
5 3 0.04 0.04 0.06 0.04
6 2 0.02 0.11 0.02 0.06
6 3 0.04 0.08 0.06 0.05
7 2 0.00 0.13 0.00 0.02
7 3 0.00 0.10 0.00 0.03
7 4 0.02 0.09 0.09 0.05
8 2 0.00 0.14 0.00 0.01
8 3 0.00 0.20 0.00 o0.01
8 4 0.00 0.10 0.05 0.02
9 2 0.00 0.24 0.00 0.02
9 3 0.00 0.13 0.04 o0.00
9 4 0.00 0.11 0.00 o0.00
9 5 0.00 0.10 0.00 o0.01

the Freeman-Tukey statistic, however, show that this test is less effesitice
in most models analyzed > 0.05, only in the model with 9 variables and 2
latent classes we do hawe= 0.00.

Finally, we compared the Parametric Bootstrap with our proposal as eegard
the behavior of the magnitude of Type | error in order to determine whetber th
were differences between them in the models analyzed. For example, as illus
trated in (Tabléb), forl = 2 density data degree, the magnitudenofor the
Patterns Method is smaller in all the models than those obtained using the Para-
metric Bootstrap with respect to tli¢?, /T and RC' statistics. We also see that
thea values are lower than 5%, a situation not found with the Parametric Boot-
strap, where it is observed that many valuesadre higher than the expected
value ¢ = 0.05), since it is the quota of type 1 error fixed on performing the
significance tests upon each of the 100 replicates. However, using dngoRe
statistic in all models the Parametric Bootstrap has Type | error values lower than
those obtained with the Patterns Method. For some models tigained with
the Bootstrap are greater than expected>(0.05). For example, for the model
with 6 variables and 2 latent classes we obtain the valee0.14.
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Table 4: Probabilities of type | error according to the number of nfiestivariables and
latent classes for a data density ofiy = 5 * 2P).

Manifest variableg LatentClass G*> x> FT RC
5 2 0.04 0.05 0.14 0.04
5 3 0.10 0.08 0.18 0.08
6 2 0.05 0.11 0.23 0.05
6 3 0.11 0.08 0.26 0.07
7 2 0.00 0.21 0.11 0.04
7 3 0.03 0.15 0.23 0.04
7 4 0.17 0.10 0.65 0.10
8 2 0.00 0.18 0.08 0.04
8 3 0.01 0.10 0.32 0.03
8 4 0.02 0.11 0.31 0.03
9 2 0.00 0.13 0.00 0.00
9 3 0.09 0.06 0.95 0.03
9 4 0.00 0.15 0.61 0.01
9 5 0.05 0.15 0.86 0.05

Table 5: Comparison of Parametric Bootstrap and the Patterns Meticodrding to
Type | error, considering the number of manifest varialiles number of latent
classes and a data density of@ = 2  2P).

Manifest Latent Parametric Bootstrap Method Patterns
variablesp) Class¢) | G x> FT RC| G*> x* FT RC
5 2 0.07 0.09 0.06 0.070.01 0.09 0.04 0.06
5 3 0.03 0.04 0.03 0.040.01 0.05 0.02 0.01
6 2 0.03 0.14 0.02 0.130.00 0.21 0.00 0.04
6 3 0.08 0.06 0.06 0.090.00 0.09 0.02 0.03
7 2 0.03 0.11 0.03 0.090.00 0.21 0.00 0.03
7 3 0.08 0.06 0.06 0.060.00 0.09 0.01 0.02
7 4 0.05 0.05 0.06 0.050.00 0.07 0.01 0.02
6 3 0.08 0.06 0.06 0.090.00 0.09 0.02 0.03
8 2 0.07 0.05 0.08 0.050.00 0.17 0.00 0.10
8 3 0.06 0.07 0.09 0.080.00 0.10 0.00 0.00
8 4 0.04 0.07 0.05 0.030.00 0.10 0.00 0.01
9 2 0.04 0.06 0.04 0.050.00 0.21 0.00 0.00
9 3 0.05 0.05 0.05 0.070.00 0.13 0.00 0.00
9 4 0.04 0.04 0.06 0.040.00 0.12 0.00 0.00
9 5 0.08 0.08 0.06 0.050.00 0.08 0.00 0.00
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7 Statistical tables of critical values

The Patterns Method does not derive from supposed parametrics sficteo

the probability distribution of the original sample’s data. On the contrary/yt on
generates data groups of identical size as the original sample, usingntee sa
number of manifest binary variables in order to estimate the empirical distribu-
tion of the GFS. Thus, the construction of statistical tables of critical values f
GFS is made possible in order to contrast a hypothetical latent class model with
sparse data which is suitable for the data from the original sample.

Due to the fact that sample sizes can vary widely, in the statistical tables
we have decided to represent theR factor, wheren is the size of the original
sample, andR is the number of response patterns. The particular vajue
represents the estimate of the density data for the fit of the latent class models.
The tabulated values of/ R are comprised from 1 and 10.

In the tables of critical values, accumulated probabilities are shown in the
top row; the rationale fon/R appears in the first column, followed by the GFS.
The intersection of the row with the column corresponds t@tgeodness-of-fit
statistic. The level of theoretical significance is calculated as,
Pvalue = 1 — P(6 < 0%).

In order to use the tables of critical values, this procedure should bevédlo

e Establish the null hypothesigiy) for the latent classes.

e Adjust the latent class model to obtain the goodness-of-fit statistic model
values of the sample.

e Calculate the rationale for/ R and find it in the table.
e For each goodness-of-fit statistic determineghalue.

e Discard(H,) if the fixed level of significanced) is greater than the-
value.

For these purposes, two tables of critical values are presented to des®ns
the application of this approach to contrast a hypothetical latent class mitkel
sparse data. The tables of critical values below present 6 manifedblearand
2 latent classes (see Table 6), as well as 8 manifest variables and I latsets
(see Tabl€&l?).

Tables of critical values of the Patterns Method are simple and practical al-
ternative to the Parametric Bootstrap for the diagnosis of latent class mattels w
sparse data. This facilitates the study of problems in the framework of |d&sst ¢
models with binary variables in sparse data. However, the critical valuddsho
be viewed with caution when/ R represented in the table is very different from
the real value.
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Table 6: The tables of critical values: 6 manifest variables and &ibtlasses

Cumulative Probabilities
n/R GFS|p25 050 0,75 090 095 096 097 098 0,99
G? | 51,7 57,3 630 682 710 722 733 746 768
1 % | 428 483 540 602 637 651 672 691 724
FT | 81,9 90,3 99,1 106,6 110,7 1125 113,0 116,1 118,6
RC | 43,1 484 534 589 61,9 632 651 664 698
G? | 515 580 664 730 77,3 783 799 823 869
2 % | 442 499 569 635 687 700 727 743 775
FT | 73,3 828 96,2 108,66 1140 116,7 1192 1236 129,7
RC | 446 503 57,5 63,3 681 693 715 728 765
G? | 451 531 615 695 73,7 750 78,1 79,1 837
3 2 |403 472 547 61,7 64,7 661 680 697 7472
FT | 56,2 685 809 925 100,8 1059 109,8 1140 1155
RC | 40,7 475 551 622 658 663 672 703 742
G? [ 433 50,1 57,8 641 680 69,1 710 738 764
4 % |406 456 52,6 585 624 631 654 67,9 728
FT | 48,7 578 702 799 87,1 891 905 949 992
RC | 40,8 46,2 53,3 588 61,9 63,7 654 682 718
G? | 42,7 488 552 63,7 660 670 692 717 760
5 2 | 40,9 46,1 521 583 624 640 655 682 711
FT | 452 53 624 729 784 798 820 868 971
RC | 41,1 465 52,4 59,0 626 644 651 683 70,6
G? | 422 486 560 635 67,7 687 698 721 751
6 2 | 40,6 46,6 54,3 61,0 649 659 668 683 721
FT | 441 51,1 596 702 747 758 77,8 81,7 871
RC | 41,0 469 545 60,8 652 658 674 690 726
G2 | 41,8 47,6 543 624 683 690 70,7 741 783
7 % | 406 46,1 523 60,7 644 658 678 70,0 73,0
FT | 43,7 50,2 572 67,1 738 783 79,7 820 875
RC | 40,8 46,4 52,7 604 652 661 674 71,1 731
G? | 405 47,6 53,7 615 652 685 687 746 784
8 2 397 458 519 593 630 644 665 71,2 751
FT | 41,8 492 56,2 646 696 716 746 804 86,7
RC | 39,7 46,1 52,3 60,0 632 644 668 71,9 755
G? | 41,0 476 552 622 67,1 690 700 722 763
9 % | 404 468 541 59,7 647 663 684 700 733
FT | 42,2 492 570 649 707 72,9 745 759 823
RC | 405 465 543 59,9 648 670 683 698 728
G? | 40,9 47,4 544 618 650 66,1 675 69,9 742
10 ? | 40,3 466 531 60,3 630 633 648 682 729
FT | 41,7 484 56,2 63,7 67,9 694 709 736 785
RC | 405 465 53,5 60,5 63,1 63,7 647 692 728
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Table 7: The tables of critical values: 8 manifest variables and &natlasses.

Cumulative Probabilities

n/R GFS| 925 050 0,75 090 095 096 097 098 0,99
G? | 260,1 272,3 2849 2926 296,6 2992 3030 3062 3133
1 2 | 2219 2357 249,9 2623 269,7 2713 2735 2775 2856
FT | 4145 4314 4485 4502 4644 4689 4748 480,7 487,9
CR | 220,8 232,7 2459 2553 2606 262,0 264,3 2698 2756
G? [251,2 2655 281,3 2955 304,1 306,2 3088 310,7 316,1
2 2 | 2184 2311 2446 257,8 2656 2681 2699 2768 2813
FT | 359,6 384,3 411,4 4347 4468 452,83 4558 4581 459,38
CR | 2195 231,3 244,9 257,1 2656 267,2 270,0 273,9 278,11
G? [ 236,9 251,7 2648 280,1 292,4 2952 3002 3034 307,0
3 y% | 2148 226,8 2404 2542 2624 2641 2682 2748 2811
FT | 298,3 324,4 3459 367,8 388,8 393,6 3994 4049 4155
CR | 2159 2281 240,5 2553 2622 266,6 270,4 274,4 280,0
G? [ 2254 2422 258,8 272,7 2852 2895 292,1 2966 299,8
4 2 |212,4 2269 2411 2548 2639 2658 270,3 2733 277,0
FT | 259,0 281,7 306,3 3322 3515 359,3 3651 373,6 381,2
CR | 2132 2279 241,6 2546 2646 2682 2718 2731 276,2
G? 2199 236,6 2515 2646 272,9 277,3 2795 286,2 2939
5 2 | 2095 2250 2389 251,4 2605 2630 266,1 269,3 2758
FT | 239,5 260,9 282,2 3030 316,3 320,0 3235 327,5 336,0
CR | 210,5 2254 239,6 251,3 2600 262,1 266,0 2693 278,2
G2 | 2230 2351 2530 2646 2715 2754 277,1 2830 2985
6 2 | 2142 226 2421 2540 2625 2653 266,7 273,1 277.6
FT | 234,6 253,1 273,83 289,8 2974 306,8 311,3 3186 339,1
CR | 215,1 226,7 2432 2544 2615 264,1 266,2 2721 2782
G? [ 2184 2322 2479 2604 2713 274,1 280,3 283,4 2913
7 x% | 2122 2253 239,7 2526 262,1 266,2 270,3 277,5 284,1
FT | 227,1 2440 262,6 277,8 2915 2956 300,5 3034 312,8
CR | 2125 2255 2404 253,1 263,4 2657 270,9 2755 282,3
G? [ 216,7 231,2 2446 2557 2653 267,8 271,0 2735 277,0
8 2 |211,8 225 2387 2512 2584 2604 2635 2651 2702
FT | 224,1 2406 2555 269,9 2794 281,9 2838 2889 296,9
CR | 212,1 2256 238,7 250,6 2589 2616 262,8 26572 270,1
G? [ 214,7 2322 2455 261,7 270,3 271,7 2749 2782 2845
9 2 |210,3 2265 241,0 254,6 264,8 266,8 2689 270,6 280,5
FT | 2225 240,0 2558 2743 2815 282,4 2850 2902 3004
CR | 210,4 226,8 241,1 2554 2645 266,6 2685 2715 2795
G? [ 216,1 229,0 2450 259,1 266,3 268,7 271,1 2752 2786
10 2 | 2116 2254 239,7 252,6 262,0 2651 267,6 270,3 2741
FT | 2220 236,3 2542 267,9 2762 2785 280,8 2850 289,5
CR | 2115 2256 2405 252,8 2610 2650 266,6 2698 273,3
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8 Conclusions

In this study, we proposed a much faster alternative, which uses Pditethsd
samples to construct the sampling distributions of the test statistic in sparse con-
tingency tables where the number of response patténis, large compared to
sample size.

From the results of the simulations, for the latent class models with binary
manifest variables, using densitiesd& 5, we have shown that the Type | er-
ror probabilities are lower thai% (« < 0.05) for the likelihood ratio (2) and
Read-CressieK(C) statistics, using our Patterns Method proposal. In light of
this, we recommend the diagnosis of latent class models for sparse data using
these statistics. In contrast, the Freeman-Tukey statistic provides adeaptab
sults when the data density ate< 4.

In the case of data density< 5, Pearson’s statistity?) should not be used
to select latent class models using the Patterns Method, given that this has the
probability of Type | error being greater thaf. In the same way, Langeheine
et al. [20] in the context of parametric bootstrapping concluded that theséwe
statistic puts a much more severe penalty on an observation in a cell with a very
low model-expected probability than the likelihood ratié does.

As a side product, by comparing the Patterns Method and the Parametric
Bootstrap for data density = 2, we show that the Patterns Method has more
accurate Type | error probabilities since the likelihood ratio, Read-@ress]
Freeman-Tukey statistics afford valuescok 0.05. In contrast, the Parametric
Bootstrap provides values in these statistics that surfpi@ssBut further study
is required to be certain about these results.

The parametric bootstrap require both knowledge of advanced statistics an
this method is computationally intense since in order to obtain a staddue
several hundred bootstrap resamples are needed for each modeddbecher
is interested in comparing. Meanwhile, the Patterns Method is presented as a
rapid, simple, and labour-saving technique to provide tables of criticabsatu
diagnose latent class models.

Finally, for future research, the Patterns Method will be tested for thke ana
ysis of ordinal data, in order to study the effectiveness of the laterg otasiel
on sparse data.
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