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Abstract

A new rotation version of the Curzon-Chazy metric is found. This
new metric was obtained by means of a perturbation method, in order to
include slow rotation. The solution is then proved to fulfill the Einstein’s
equations using a REDUCE program. Furthermore, the applications of
this new solution are discussed.

Keywords: general relativity; solutions of Einstein’s equations; approximation
procedures; weak fields.

Resumen

Se encontró una nueva versión rotante de la métrica de Curzon-Chazy.
Esta nueva métrica fue obtenida por medio de un método perturbativo para
incluir rotación lenta. Se prueba que la métrica obtenida es solución a las
ecuaciones de Einstein por medio de un programa en REDUCE. Final-
mente, se discuten las aplicaciones de esta nueva solución.

Palabras clave: relatividad general; soluciones de las ecuaciones de Einstein;
procedimientos de aproximación; campos débiles.
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1 Introduction

The Curzon-Chazy metric [6, 7, 19] is one of the simplest solutions of the Ein-
stein field equations (EFE) for the Weyl metric. The original idea of Curzon [7]
and Chazy [6] was the superposition of two particles at different points on the
symmetry axis. This superposition exhibit a singularity between these particles
along this symmetry axis. This singularity is interpreted as a strut (Weyl strut),
which stress holds these particles apart and does not exert a gravitational field
[3, 11].

For one particle, the Curzon-Chazy metric describes the exterior field of a
finite source [11], and has a spherically symmetric Newtonian potential of a point
particle located at r = 0. The resulting spacetime is not spherically symmetric
and its weak limit is that of an object located at the origin with multipoles. More-
over, the singularity at r = 0 has a very interesting but complicated directionally
dependent structure [10, 11]. There is a curvature singularity at ρ = 0, z = 0
that is not surrounded by a horizon, i.e. it is naked. Every light ray emitted from
it becomes infinitely redshifted, so that it is effectively invisible [11]. Studying
the principal null directions, it was found that this spacetime has an invariantly
hypersurface

√
ρ2 + z2 = M , on which the Weyl invariant J (determinant of
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the Weyl five complex scalar functions) vanishes [2, 11, 18]. Furthermore, this
metric is Petrov type D, except at two points (z = ±M ) that intersect the axis
ρ = 0, where it is of Petrov type O [2].

The properties of this solution have been analyzed since its discovery such
as the potential surfaces for its time-like geodesics and their variations with the
change in energy [9]. A generalization of the metric to the Einstein-Maxwell
equations have also been obtained [15]. A modified Curzon-Chazy metric, using
a rotating reference frame as approach, has already been applied to study binary
pulsar systems [20].

A slowly rotating version of the Curzon-Chazy solution could be used, for
instance, to study the gravitational lens effect, because of its asymmetrical na-
ture. Furthermore, it is important to mention Halilsoy’s research [12], in his
work he obtained a rotating Curzon metric using the Ernst potential method [8],
however the rotational metric component term (g03) obtained in his work is non
flat, therefore it could not be of astrophysical interest. Besides there is a prob-
lem with the generalization Halilsoy proposes for an arbitrary number of massive
particules, it fails to obtain the correct form for the case of two massive particles.

In this work, a slow rotating metric is obtained by introducing a perturbation
in the metric rather than using a rotating reference frame. Our rotational metric
term is Kerr like [16]. Moreover, we discuss the possible applications of this
new version.

2 The Curzon-Chazy metric

The Curzon-Chazy metric in canonical cylindrical coordinates is given by [4, 6,
7] (in geometrical units G = c = 1):

ds2 = e−2ψdt2 − e2(ψ−γ)(dρ2 + dz2)− e2ψρ2dϕ2, (1)

where

ψ =
M

η
,

γ =
M2ρ2

2η4
, (2)

η2 = ρ2 + z2.
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The Curzon-Chazy metric in spherical coordinates can be obtained by means
of the following mapping [4, 5]:

ρ =
√
Z and z = (r −M) cos θ, (3)

where Z = (r2 − 2Mr) sin2 θ.
Using this transformation the Curzon-Chazy metric takes the form

ds2 = e−2ψdt2 − e2(ψ−γ)(Xdr2 + Y dθ2)− e2ψZdϕ2, (4)

where

ψ =
M

η
,

γ =
M2(r2 − 2Mr) sin2 θ

2η4
,

η2 = r2 − 2Mr +M2 cos2 θ

∆ = r2 − 2Mr +M2 sin2 θ, (5)

X =
∆

r2 − 2Mr
,

Y = ∆.

3 The Lewis metric

Now, we need a new metric to include a new feature (rotation) into a given seed
metric, i.e. the Curzon-Chazy spacetime. The Lewis metric is given by [17, 4]

ds2 = V dt2 − 2Wdtdϕ− eµdρ2 − eνdz2 −Qdϕ2, (6)

where we have chosen the canonical coordinates x1 = ρ and x2 = z. The po-
tentials V, W, X, µ and ν are functions of ρ and z (ρ2 = V Q+W 2). Choosing
µ = ν and performing the following changes of potentials

V = f, W = ωf, Q =
ρ2

f
− ω2f, eµ =

eχ

f
, (7)

we get the Papapetrou metric

ds2 = f(dt− ωdϕ)2 − eχ

f
[dρ2 + dz2]− ρ2

f
dϕ2. (8)

Note that for slow rotation we neglect the second order in ω, hence ω2 ≃
0 ⇒W 2 ≃ 0, and Q ≃ ρ2/f .

Rev.Mate.Teor.Aplic. (ISSN 1409-2433) Vol. 22(2): 265–274, July 2015



SLOWLY ROTATING CURZON-CHAZY METRIC 269

4 Perturbing the Curzon-Chazy metric

To include slow rotation into the Curzon-Chazy metric we use the following
procedure:

• choose expressions for the canonical coordinates ρ and z (in this case
equations (3)),

• choose V, Q and µ (with µ = ν and ω2 ≃ 0 ⇒ W 2 ≃ 0) in such a way
you can get the seed metric if it is not perturbed, and

• solve the EFE for the Lewis metric, equation (6) with the chosen potentials
V, Q and µ, i.e. find W .

Let us apply this procedure for the Curzon-Chazy metric as seed metric. First
of all, we choose expressions for the canonical coordinates ρ and z. From (3) we
get

dρ2 + dz2 = ∆

(
dr2

r2 − 2Mr
+ dθ2

)
= Xdr2 + Y dθ2, (9)

where
X =

∆

r2 − 2Mr
and Y = ∆.

Now, let us choose

V = f = e−2ψ and eµ =
eχ

f
= e2(ψ−γ),

and neglecting the second order in W , we have

Q ≃ ρ2

f
= Ze2ψ = e2ψ(r2 − 2Mr) sin2 θ.

The Lewis metric takes the form

ds2 = e−2ψdt2 − 2Wdtdϕ− e2(ψ−γ)[Xdr2 + Y dθ2]− Ze2ψdϕ2. (10)

To obtain a slowly rotating version of the metric (4), the only potential, we
have to find is W . In order to do this, we need to solve the EFE for this metric:

Gij = Rij −
R

2
gij = 0, (11)

where Rij (i, j = 0, 1, 2, 3) are the Ricci tensor components and R is the cur-
vature scalar. To find the approximated slowly version of the metric, we wrote
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a REDUCE program to find the Ricci tensor [14]. The interested reader can re-
quest this program by sending us a message. Fortunately, the Ricci tensor com-
ponentsR00, R11, R12, R22, R23, R33 and the curvature scalar depend upon the
potentials V, X, Y, Z and not on W (see Appendix). Hence, these components
vanish. The only equation we have to solve is R03 = 0, because it depends upon
W . The equation for this Ricci component, up to order O(M3, a2), is

sin θ

(
∂2W

∂θ2
+ r2

∂2W

∂r2

)
− cos θ

∂W

∂θ
= 0. (12)

The solution for (12) is

W =
K

r
sin2 θ. (13)

In order to find the constant K let us see the Lense-Thirring metric which is
obtained from the Kerr metric:

ds2 =

(
1− 2M

r

)
dt2 +

4J

r
sin2 θdtdϕ−

(
1− 2M

r

)−1

dr2 − r2dΣ2, (14)

where dΣ2 = dθ2 + sin2 θ dϕ2 and J = Ma is the angular momentum. At first
order in M , this metric and the perturbed Curzon-Chazy metric coincide. Then,
comparing the second term of the latter metric with the corresponding term of
(14), we note that K = −2J = −2Ma.

Then, the slow rotating Curzon-Chazy metric is

ds2 = e−2ψdt2 +
4J

r
sin2 θdtdϕ−∆e2(ψ−γ)

(
dr2

r2 − 2Mr
+ dθ2

)
(15)

− e2ψ(r2 − 2Mr) sin2 θdϕ2.

We check that the metric (15) is indeed a solution of the EFE, up to the order
O(M3, a2), using the same REDUCE program.

It is interesting to expand the metric (15) in a Taylor series to see its weak
limit structure, the result is

ds2 =

(
1− 2M

r
+

2

3

M3

r3
P2(cos θ)

)
dt2 +

4J

r
sin2 θdtdϕ

−
(
1 +

2M

r
+

4M2

r2
+ 2

(
4− 1

3
P2(cos θ)

)
M3

r3

)
dr2 (16)

− r2
(
1− 2

3

M3

r3
P2(cos θ)

)
dΣ2,
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where P2(cos θ) = (3 cos2 θ − 1)/2 and dΣ2 = dθ2 + sin2 θdϕ2.
From a direct comparison with the Hartle-Thorne metric [13], we see that

this metric could correspond to a spacetime of a massive object with mass quadru-
pole given by Q =M3/3.

5 Conclusion

The slow rotation version of the Curzon-Chazy metric was generated perturbing
the Einstein equations from the Lewis metric. Slow rotating solutions are more
realistic metrics that static metrics as the Curzon-Chazy spacetime. Moreover,
Halilsoy found the first rotating version of this metric [12], but it is non flat. Due
to this problem, this metric should not be used for astrophysical calculations.
Our slow rotating version of the Curzon-Chazy spacetime is asymptotically flat
and it could be applied to astrophysical systems where this spacetime should
appear.

This new approximate metric has multiple applications. For instance, it
could be used to describe binary systems or ring like systems [20, 1]. New
calculations, such as the geodesics can be performed in order to visualize the
trajectories due to such gravitational field. Also, a description of the surface po-
tentials due to these geodesics can be studied, as it was done for the non-rotating
Curzon-Chazy solution [9]. Moreover, for this spacetime, gravitational lens cal-
culations can be performed, it would lead to a more real scenario for treating
binary or ring-like systems.
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A Appendix

The Ricci tensor components are

R00 =
e2(γ−2ψ)

2X2Y 2Z

(
−2X2Y Z

∂2ψ

∂θ2
−XY Z

∂ψ

∂θ

∂X

∂θ
+X2Z

∂ψ

∂θ

∂Y

∂θ

− X2Y
∂ψ

∂θ

∂Z

∂θ
− 2XY 2Z

∂2ψ

∂r2
+ Y 2Z

∂ψ

∂r

∂X

∂r
−XY Z

∂ψ

∂r

∂Y

∂r

− XY 2∂ψ

∂r

∂Z

∂r

)
R01 = 0

R02 = 0

R03 =
e2(γ−ψ)

2X2Y 2Z

(
−XY Z∂X

∂θ

∂W

∂θ
+ Y 2Z

∂X

∂r

∂W

∂r
− 2X2Y Z

∂2W

∂θ2

+ X2Z
∂W

∂θ

∂Y

∂θ
+X2Y

∂W

∂θ

∂Z

∂θ
− 2XY 2Z

∂2W

∂r2
−XY Z

∂W

∂r

∂Y

∂r

+ XY 2∂W

∂r

∂Z

∂r

)
R11 =

1

4XY 2Z2

(
−4X2Y Z2∂

2ψ

∂θ2
− 2XY Z2∂ψ

∂θ

∂X

∂θ
+ 2X2Z2∂ψ

∂θ

∂Y

∂θ

− 2X2Y Z
∂ψ

∂θ

∂Z

∂θ
− 4XY 2Z2∂

2ψ

∂r2
− 8XY 2Z2

[
∂ψ

∂r

]2
+ 2Y 2Z2∂ψ

∂r

∂X

∂r

− 2XY Z2∂ψ

∂r

∂Y

∂r
− 2XY 2Z

∂ψ

∂r

∂Z

∂r
+ 4X2Y Z2∂

2γ

∂θ2
+ 2XY Z2∂γ

∂θ

∂X

∂θ

− 2X2Z2∂γ

∂θ

∂Y

∂θ
+ 2X2Y Z

∂γ

∂θ

∂Z

∂θ
+ 4XY 2Z2∂

2γ

∂r2
− 2Y 2Z2∂γ

∂r

∂X

∂r

Rev.Mate.Teor.Aplic. (ISSN 1409-2433) Vol. 22(2): 265–274, July 2015



274 P. MONTERO – F. FRUTOS – C. GUTIÉRREZ – I. CORDERO

+ 2XY Z2∂γ

∂r

∂Y

∂r
− 2XY 2Z

∂γ

∂r

∂Z

∂r
− 2XY Z2∂

2X

∂θ2
+ Y Z2

[
∂X

∂θ

]2
+ XZ2∂X

∂θ

∂Y

∂θ
−XY Z

∂X

∂θ

∂Z

∂θ
+ Y Z2∂X

∂r

∂Y

∂r
+ Y 2Z

∂X

∂r

∂Z

∂r

− 2XY Z2∂
2Y

∂r2
+XZ2

[
∂Y

∂r

]2
− 2XY 2Z

∂2Z

∂r2
+XY 2

[
∂Z

∂r

]2)

R12 =
1

4XY Z2

(
−8XY Z2∂ψ

∂θ

∂ψ

∂r
− 2XY Z

∂γ

∂θ

∂Z

∂r
− 2XY Z

∂γ

∂r

∂Z

∂θ

+ Y Z
∂X

∂θ

∂Z

∂r
+XZ

∂Y

∂r

∂Z

∂θ
− 2XY Z

∂2Z

∂θ∂r
+XY

∂Z

∂θ

∂Z

∂r

)
R13 = 0

R22 =
1

4X2Y Z2

(
−4X2Y Z2∂

2ψ

∂θ2
− 8X2Y Z2

[
∂ψ

∂θ

]2
− 2XY Z2∂ψ

∂θ

∂X

∂θ

+ 2X2Z2∂ψ

∂θ

∂Y

∂θ
− 2X2Y Z

∂ψ

∂θ

∂Z

∂θ
− 4XY 2Z2∂

2ψ

∂r2
+ 2Y 2Z2∂ψ

∂r

∂X

∂r

− 2XY Z2∂ψ

∂r

∂Y

∂r
− 2XY 2Z

∂ψ

∂r

∂Z

∂r
+ 4X2Y Z2∂

2γ

∂θ2
+ 2XY Z2∂γ

∂θ

∂X

∂θ

− 2X2Z2∂γ

∂θ

∂Y

∂θ
− 2X2Y Z

∂γ

∂θ

∂Z

∂θ
+ 4XY 2Z2∂

2γ

∂r2
− 2Y 2Z2∂γ

∂r

∂X

∂r

+ 2XY Z2∂γ

∂r

∂Y

∂r
+ 2XY 2Z

∂γ

∂r

∂Z

∂r
− 2XY Z2∂

2X

∂θ2
+ Y Z2

[
∂X

∂θ

]2
+ XZ2∂X

∂θ

∂Y

∂θ
+ Y Z2∂X

∂r

∂Y

∂r
+X2Z

∂Y

∂θ

∂Z

∂θ
− 2XY Z2∂

2Y

∂r2

+ XZ2

[
∂Y

∂r

]2
−XY Z

∂Y

∂r

∂Z

∂r
− 2X2Y Z

∂2Z

∂θ2
+X2Y

[
∂Z

∂θ

]2)
R23 = 0

R33 =
e2γ

4X2Y 2Z

(
−4X2Y Z2∂

2ψ

∂θ2
− 2XY Z2∂ψ

∂θ

∂X

∂θ
+ 2X2Z2∂ψ

∂θ

∂Y

∂θ

− 2X2Y Z
∂ψ

∂θ

∂Z

∂θ
− 4XY 2Z2∂

2ψ

∂r2
+ 2Y 2Z2∂ψ

∂r

∂X

∂r
− 2XY Z2∂ψ

∂r

∂Y

∂r

− 2XY 2Z
∂ψ

∂r

∂Z

∂r
−XY Z

∂X

∂θ

∂Z

∂θ
+ Y 2Z

∂X

∂r

∂Z

∂r
+X2Z

∂Y

∂θ

∂Z

∂θ

− XY Z
∂Y

∂r

∂Z

∂r
− 2X2Y Z

∂2Z

∂θ2
+X2Y

[
∂Z

∂θ

]2
− 2XY 2Z

∂2Z

∂r2

+ XY 2

[
∂Z

∂r

]2)
.
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