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Abstract

In this paper we consider a monopoly producing a consumer good of
high demand. Its market price depends on the volume of the produced
goods described by the Cobb-Douglas production function. A production-
sales activity of the firm is modeled by a nonlinear differential equation
with two bounded controls: the share of the profit obtained from sales that
the company reinvests into expanding own production, and the amount of
short-term loans taken from a bank for the same purpose. The problem
of maximizing discounted total profit on a given time interval is stated
and solved. In order to find the optimal production and sales strategies
for the company, the Pontryagin maximum principle is used. In order to
investigate the arising two-point boundary value problem for the maximum
principle, an analysis of the corresponding Hamiltonian system is applied.
Based on a qualitative analysis of this system, we found that depending on
the initial conditions and parameters of the model, both, singular and bang-
bang controls can be optimal. Economic analysis of the optimal solutions
is discussed.

Keywords: nonlinear microeconomic control model; production-sales strategy;
Pontryagin maximum principle; Hamiltonian system.

Resumen

En este artículo consideramos un monopolio produciendo un producto
de consumo de gran demanda. Su precio de mercado depende del volumen
de producción descrito por la función de producción de Cobb-Douglas.
Una actividad de producción y ventas de la firma es modelada por una
ecuación diferencial no lineal con dos controles de frontera: la partici-
pación en el resultado de las ventas que la compañía reinvierte para ex-
pandir su propia producción, y el monto de los préstamos a corto plazo
adquiridos del sistema bancario con el mismo propósito. Se plantea y
resuelve el problema de maximizar la ganancia total descontada en un in-
tervalo de tiempo dado. Para encontrar las estrategias óptimas de pro-
ducción y ventas para la compañía, se usa el principio del máximo de
Pontryagin. Para investigar el problema de valores de dos puntos de fron-
tera que aparece para el principio del máximo, se aplica un análisis del
sistema hamiltoniano correspondiente. Basado en un análisis cualitativo
del sistema, encontramos que dependiendo de las condiciones iniciales y
los parámetros del modelo, tanto el control singular como el bang-bang
pueden ser óptimos. Se discute un análisis económico de las soluciones
óptimas.

Palabras clave: modelo de control microeconómico no lineal; estrategia de pro-
ducción y ventas; principio del máximo de Pontryagin; sistema hamiltoniano.
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1 Introduction

Behavior of economic processes can be understood and predicted using math-
ematical models. Many well-known multidimensional microeconomic models
such as the Leontief model [11] or the Loon’s model [12] are linear. While non-
linearity characterizes most of economic processes and phenomena, analytical
study of multi-dimensional nonlinear models is rather complex and laborious.
Of course, one can experiment with such models on a computer, but an ana-
lytical study of an economic model compared with simulation of the model on a
computer has an important advantage. It gives us the opportunity to get the whole
picture of the studied process or phenomenon for any values of the model’s pa-
rameters, while the simulation gives only a certain fragments of the general pic-
ture at the selected parameter values. Therefore, in order to study the long-term
trends, growth factors or assess the impact of various options for management
decisions, the study of the lower-sector nonlinear models are applied. One such
model is the one-sector Solow-Swan model [15, 16]. In this model, the com-
pany produces a single product, and sells it to obtain profit. The profit from sales
can be used for both, consumption and investment. The ability to manage such
capital distribution leads to the consideration of various control models, as well
as to the study of the corresponding optimal control problems [1, 7, 3, 4, 5, 8].
In this paper, the economic dynamics of a company is described by the Solow-
Swan type control model. What differs our work from the papers referred ear-
lier is that the market (sales) price of the produced good depends on a certain
model of the market. In Section 2 we introduce our control model alone with the
model-driven mechanism for the formation of the market price of the product;
the properties of the model are also studied. Additionally, in this section we state
the corresponding optimal control problem and discuss the existence of its opti-
mal solutions. In order to analyze the optimal control problem, in Section 3, we
apply the Pontryagin maximum principle and state the corresponding two-point
boundary value problem for the maximum principle. In Section 4 we study the
possibility for the boundary value problem to have singular regimes. Section 5
contains auxiliary results related to the subsequent analysis of the Hamiltonian
system, which is issued based on the boundary value problem of the maximum
principle. Section 6 presents an analysis of the Hamiltonian system, based on
the results obtained in the previous section. This analysis allows us to specify in
Section 7 all possible types of the optimal controls that can arise in the study of
the optimal control problem. In Section 8, we describe the numerical procedure
that helps us to investigate the cases for which we cannot predict analytically
specific features of the optimal control, but only its type. Finally, in Section 9
we describe possible directions for further research related to modification of the
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92 E.V. GRIGORIEVA – E.N. KHAILOV

control model so as to the corresponding optimal control problem. Section 10
contains our conclusions.

2 Optimal control problem

Consider a company that produces a single consumer good of high demand on
a stable market. We assume that the company is a monopoly in this market.
Moreover, we suppose that the company sells all it produces at the market price.
Let x be the production funds of the company. Then, Y = Π(x) is the amount
of the produced consumer good, where Π(x) is the Cobb-Douglas production
function given by the formula Π(x) = rx1−σ

0 xσ, σ ∈ (0, 1]. Here x0 is the
initial production funds, and r is the profitability of the production with the initial
production funds of x0.

Let p be the market price of the produced consumer good, and p0 be its unit
price. We assume that the dynamics of the production funds of the company
obeys the Cauchy problem{

ẋ(t) = I(t)− δx(t), t ∈ [0, T ],
x(0) = x0, x0 > 0.

(1)

where δ is amortization factor that shows depreciation of the production funds,
and I(t) is total investments made by the company to increase the production
funds.

The main balance relationship at time t ∈ [0, T ] is as follows

p(t)Y (t) = I1(t) + C(t), (2)

where the left hand side is the total profit obtained from the market sale of the
consumer good in the amount of Y (t) at the price p(t). The right hand side
there is the sum of the own investments I1(t) and consumption C(t). We sup-
pose that the total investment I(t) consists of the own investment I1(t) and of
the outside investment I2(t). The own investment I1(t) is the share of the profit
u(t)p(t)Y (t), received from the sales of the consumer good on the market. In-
vestment I2(t) is the short-term loans K(t). Here the functions u(t), K(t) are
controls, which satisfy the restrictions:

0 ≤ u(t) ≤ 1, 0 ≤ K(t) ≤ Kmax. (3)

From the formula (2) and previous arguments it is easy to see that C(t) = (1 −
u(t))p(t)Y (t).
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By the definition of the function Y (t) and the equation (1), we have the
Cauchy problem{

ẋ(t) = u(t)p(t)Π(x(t)) +K(t)− δx(t), t ∈ [0, T ],
x(0) = x0, x0 > 0.

(4)

By the model of the market [18], we assume that the market price of the
consumer good satisfies the following formula

p(t) = p̄− bY (t) = p̄− bΠ(x(t)) > 0, t ∈ [0, T ], (5)

where p̄ is the maximum possible market price of the consumer good, and b is
some given constant. Substituting the expression (5) into the differential equa-
tion of the Cauchy problem (4), we rewrite it as follows{

ẋ(t) = u(t) (p̄− bΠ(x(t)))Π(x(t)) +K(t)− δx(t), t ∈ [0, T ],
x(0) = x0, x0 > 0.

(6)

As the objective function we choose the total discounted profit of the com-
pany on the given time interval [0, T ] of the following type

I(u,K) =

T∫
0

e−ρt
{
(1− u(t)) (p̄− bΠ(x(t)))Π(x(t))− p0Π(x(t))

−(1 + λ)K(t)
}
dt+ e−ρTx(T ).

(7)

It is required to maximize this objective function on the set of admissible con-
trols, which consists of all possible Lebesgue measurable functions (u(t),K(t))
satisfying the inequalities (3) for almost all t ∈ [0, T ]. In the expression (7), the
value ρ is the discounting coefficient that reflects the rate of inflation, and λ is the
loan annual percentage rate. The term e−ρTx(T ) is the discounted production
funds of the company at the final time T . Moreover, the solution x(t) must be
positive and satisfy the inequality from (5) for all t ∈ [0, T ]. Thus, we have the
optimal control problem (7) subject to (6) with controls satisfying (3).

Next, we consider the case of a linear Cobb-Douglas production function,
i.e. σ = 1. Then, the Cauchy problem (6) can be written as{

ẋ(t) = u(t) (p̄− brx(t)) rx(t) +K(t)− δx(t), t ∈ [0, T ],
x(0) = x0, x0 > 0,

(8)

and the objective function (7) is transformed as follows

I(u,K) =

T∫
0

e−ρt
{
(1− u(t)) (p̄− brx(t)) rx(t)− p0rx(t)

−(1 + λ)K(t)
}
dt+ e−ρTx(T ).

(9)
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94 E.V. GRIGORIEVA – E.N. KHAILOV

In order to simplify the optimal control problem (3), (8), (9) we introduce
a new variable y = brp̄ −1x, and also following positive constants α = p̄r,
β = p0r, where α > β. We also define a new control v(t) = brp̄ −1K(t),
where 0 ≤ v(t) ≤ vmax and vmax = brp̄ −1Kmax. At last, let y0 = brp̄ −1x0.
Moreover, the positivity of the price p(t) in the formula (5) consists of satisfying
the condition y(t) < 1 for all t ∈ [0, T ]. Then, the Cauchy problem (8) and the
objective function (9) we rewrite as{

ẏ(t) = αu(t)(1− y(t))y(t) + v(t)− δy(t), t ∈ [0, T ],
y(0) = y0, y0 ∈ (0, 1),

(10)

I(u, v) =
p̄

br

( T∫
0

e−ρt
{
α(1− u(t))(1− y(t))y(t)− βy(t)

−(1 + λ)v(t)
}
dt+ e−ρT y(T )

)
.

(11)

By the class of admissible controls Ω(T ) we understand all possible Lebesgue
measurable functions (u(t), v(t)) that for almost all t ∈ [0, T ] satisfy the restric-
tions:

0 ≤ u(t) ≤ 1, 0 ≤ v(t) ≤ vmax. (12)

For convenience, we introduce the new objective function

J(u, v) =

T∫
0

e−ρt
{
α(1− u(t))(1− y(t))y(t)− βy(t)

−(1 + λ)v(t)
}
dt+ e−ρT y(T ),

(13)

which is different from the function (11) by the positive factor p̄(br)−1. Maxi-
mizing this objective function on the set Ω(T ) of all admissible controls, we will
consider further. Moreover, the solution y(t) must satisfy the inequalities:

0 < y(t) < 1, t ∈ [0, T ]. (14)

Thus, we obtain the optimal control problem (10), (12)–(14).
Now, we discuss the execution of the restrictions (14). Suppose that in the

subsequent arguments the inequality δ > vmax is valid. It means that the amount
of the loanK(t) is comparable to the amount δx(t) of production funds outgoing
from productive activities. Note that if the right inequality in (14) is violated,
then it can lead to the excessive filling of the market by the consumer good
and reduce its market price to zero, which is impossible. Therefore, following
statement holds.
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Lemma 1 For arbitrary controls (u(·), v(·)) ∈ Ω(T ) the solution y(t) of the
corresponding Cauchy problem (10) exists on the entire interval [0, T ] and sat-
isfies the inequalities (14).

By Lemma 1 and results from [10], we see that in the problem (10), (12)–(14)
there exists the optimal decision consisting of the optimal controls (u∗(t), v∗(t))
and corresponding optimal solution y∗(t), t ∈ [0, T ]. For their analysis we
apply the Pontryagin maximum principle [13]. The results of this analysis are
presented in subsequent sections.

3 Pontryagin maximum principle

We write the Hamiltonian of the problem (10), (12)–(14) as

H(y, ψ, u, v, t) =
(
αu(1−y)y+v−δy

)
ψ+e−ρt

(
α(1−u)(1−y)y−βy−(1+λ)v

)
,

where ψ is the adjoint variable.
Then, by the virtue of the Pontryagin maximum principle [13], for the opti-

mal controls (u∗(t), v∗(t)) and corresponding optimal solution y∗(t) there exits
the nontrivial solution ψ∗(t) of the adjoint system

ψ̇∗(t) = −
(
αu∗(t)(1− 2y∗(t))− δ

)
ψ∗(t)

−e−ρt
(
α(1− u∗(t))(1− 2y∗(t))− β

)
, t ∈ [0, T ],

ψ∗(T ) = e−ρT ,

(15)

such that the controls (u∗(t), v∗(t)) maximize the Hamiltonian
H(y∗(t), ψ∗(t), u, v, t) with respect to the values u, v for almost all t ∈ [0, T ],
and therefore satisfy the relationships:

u∗(t) =


0, if α(1− y∗(t))y∗(t)(ψ∗(t)− e−ρt) < 0,

∀u ∈ [0, 1], if α(1− y∗(t))y∗(t)(ψ∗(t)− e−ρt) = 0,

1, if α(1− y∗(t))y∗(t)(ψ∗(t)− e−ρt) > 0,

(16)

v∗(t) =


0, if ψ∗(t)− (1 + λ)e−ρt < 0,

∀v ∈ [0, vmax], if ψ∗(t)− (1 + λ)e−ρt = 0,

vmax, if ψ∗(t)− (1 + λ)e−ρt > 0.

(17)
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96 E.V. GRIGORIEVA – E.N. KHAILOV

Now, in these relationships and in the system (15), we will execute the sub-
stitution of the variable η∗(t) = eρtψ∗(t)− 1. Then, the adjoint system (15) can
be rewritten as

η̇∗(t) = −
(
αu∗(t)(1− 2y∗(t))− (δ + ρ)

)
η∗(t)

−
(
α(1− 2y∗(t))− (δ + ρ+ β)

)
, t ∈ [0, T ],

η∗(T ) = 0,

(18)

and by positiveness of values e−ρt and α(1− y∗(t))y∗(t), the relationships (16),
(17) are transformed as follows

u∗(t) =


0, if η∗(t) < 0,

∀u ∈ [0, 1], if η∗(t) = 0,

1, if η∗(t) > 0,

(19)

v∗(t) =


0, if η∗(t) < λ,

∀v ∈ [0, vmax], if η∗(t) = λ,

vmax, if η∗(t) > λ.

(20)

Therefore, based on systems (10), (18) and relationships (19), (20) we obtain
the two-point boundary value problem (TPBVP) for the maximum principle of
the type{

ẏ(t) = αu(η(t))(1− y(t))y(t) + v(η(t))− δy(t),

η̇(t) = −
(
αu(η(t))(1−2y(t))−(δ+ρ)

)
η(t)−

(
α(1−2y(t))− (δ+ρ+β)

)
,

(21)

y(0) = y0, η(T ) = 0, y0 ∈ (0, 1), (22)

where

u(η) =


0, if η < 0,

∀u ∈ [0, 1], if η = 0,

1, if η > 0,

(23)

v(η) =


0, if η < λ,

∀v ∈ [0, vmax], if η = λ,

vmax, if η > λ.

(24)

Note that the optimal controls (u∗(t), v∗(t)), optimal solution y∗(t) and corre-
sponding solution η∗(t) of the adjoint system (18) satisfy this boundary value
problem. Next, we study the TPBVP for the maximum principle (21)–(24) in
details.
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4 Singular regimes

Now, we will study the presence of singular regimes in the TPBVP (21)–(24).
This means studying the occurrence of the cases in which the solution η(t) can
be equal to 0 or λ on some finite subintervals of the segment [0, T ], or which
means that the relationships (23), (24) cannot uniquely determine the controls u
and v, respectively.

Analyzing the formulas (23), (24) for the controls u(η), v(η) we see that
singular regimes are possible only in the following two situations.

• Let η(t) = 0 for all t ∈ ∆ ⊂ [0, T ]. Since η(t) = 0 < λ, then obviously
that the control v(η(t)) = 0. From the equality η(t) = 0 on the interval
∆, we find that η̇(t) = 0. Substituting these equalities into the second
equation of the TPBVP (21)–(24) we find the expression

α(1− 2y)− (δ + ρ+ β) = 0.

By this equality, we introduce the value

y⋆ =
α− δ − ρ− β

2α
. (25)

Therefore, at the point (y⋆, 0) of the plane (y, η), the singular regime is
possible only if y⋆ > 0, that also can be written as α > δ + ρ + β. If we
have the opposite inequality α ≤ δ + ρ + β, then the singular regime is
not available.

Further, we suppose that α > δ + ρ + β. By the formula (25), we have
y⋆ ∈ (0, 1). Let us find the control u on this singular regime. From the
first equation of the TPBVP (21)–(24) we find the required formula

using =
δ

α(1− y⋆)
.

It is easy to check that this control is admissible, i.e. using ∈ (0, 1).

• Let η(t) = λ for all t ∈ ∆ ⊂ [0, T ]. Since η(t) = λ > 0, then obviously
that the control u(η(t)) = 1. From equality η(t) = λ on the interval ∆ we
find that η̇(t) = 0. Substituting these equalities into the second equation
of the TPBVP (21)–(24) we find the expression(

α(1− 2y)− (δ + ρ)
)
λ+

(
α(1− 2y)− (δ + ρ+ β)

)
= 0.
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98 E.V. GRIGORIEVA – E.N. KHAILOV

By this equality, introduce the value

y⋆⋆ =
α− δ − ρ− β(1 + λ)−1

2α
. (26)

Therefore, at the point (y⋆⋆, λ) of the plane (y, η), the singular regime is
possible only if y⋆⋆ > 0, or for α > δ + ρ + β(1 + λ)−1. If we have the
opposite inequality α ≤ δ + ρ + β(1 + λ)−1, then the singular regime is
not possible.

Further, we suppose that α > δ+ρ+β(1+λ)−1. By the formula (26), we
have y⋆⋆ ∈ (0, 1). Let us find the control v on this singular regime. From
the first equation of the TPBVP (21)–(24) we find the required formula

vsing = αy2⋆⋆ − (α− δ)y⋆⋆.

It is easy to check that vsing < 0, and hence this control is not admissible.

Therefore, the singular regime:

u = using, v = 0, y = y⋆, η = 0 (27)

is possible, if the inequality α > δ + ρ+ β holds.

5 Auxiliary results

Let us consider the system of the equations (21) and the relationships (23), (24),
which form the corresponding Hamiltonian system. We will investigate this sys-
tem in details.

First, we will study the curves in the plane (y, η) on which ẏ = 0 and η̇ = 0.

• Let ẏ = 0. From the first equation of the system (21) we have

αu(η)(1− y)y + v(η)− δy = 0. (28)

Next, we consider the possible cases for the controls u(η) and v(η).

– Let u(η) = 0. This is possible, when η < 0. Then, η < λ, and
therefore v(η) = 0. Hence, we obtain the line y = 0.

– Let u(η) = 1. This is possible, when η > 0. In this case there are
two possible situations.
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∗ Let η > λ. Then, we have v(η) = vmax. Therefore, the equation
(28) can be written as

αy2 − (α− δ)y − vmax = 0.

The discriminant of this quadratic equation is positive, and so it
has two distinct roots:

ỹ =
(α− δ) +

√
(α− δ)2 + 4αvmax

2α
,

˜̃y =
(α− δ)−

√
(α− δ)2 + 4αvmax

2α
.

It is easy to check that ỹ ∈ (0, 1) and ˜̃y < 0. Then, we have the
line y = ỹ.

∗ Let 0 < η < λ. Then, we have v(η) = 0. Therefore, the
equation (28) can be written as

αy2 − (α− δ)y = 0,

from which we find two roots y = 0 and y = α−1(α − δ).
Introduce the value

ȳ =
α− δ

α
.

The location of ȳ on the axis y depends on the ratio between α
and δ. It is easy to see that
· for α > δ we have ȳ ∈ (0, 1);
· for α = δ we have ȳ = 0;
· for α < δ we have ȳ < 0.

Note immediately that for all values of the parameters the in-
equality ȳ < ỹ holds. Finally, we obtain the line y = 0 for
α ≤ δ, and the lines y = 0, y = ȳ for α > δ.

Combining the previous results for the curve ẏ = 0, we have the relation-
ships:

α ≤ δ :

{
y = 0, if η < λ,

y = ỹ, if η > λ,

α > δ :


y = 0, if η < λ,

y = ȳ, if 0 < η < λ,

y = ỹ, if η > λ.

(29)
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100 E.V. GRIGORIEVA – E.N. KHAILOV

• Let η̇ = 0. From the second equation of the system (21) we have(
αu(η)(1− 2y)− (δ + ρ)

)
η +

(
α(1− 2y)− (δ + ρ+ β)

)
= 0. (30)

Next, we consider the possible cases for the control u(η).

– Let u(η) = 1. This is possible, when η > 0. Introduce the value

ŷ =
α− ρ− δ

2α
.

Then, from the expression (30) we find the formula

η = −1− β

2α(y − ŷ)
. (31)

The graph of the function (31) defines the increasing hyperbola with
the line y = ŷ as its vertical asymptote. The location of ŷ on the axis
y depends on the ratio between α and (ρ+ δ). It is easy to see that

∗ for α > ρ+ δ we have ŷ ∈ (0, 1);
∗ for α = ρ+ δ we have ŷ = 0;
∗ for α < ρ+ δ we have ŷ < 0.

Note immediately that the inequality ŷ < ỹ holds for all values of
the parameters. Moreover, it is easy to see that for α ≥ δ the in-
equality ŷ < ȳ is valid. The graph of (31) is also characterized by
the point (y⋆, 0), in which this graph intersects with the axis y. From
the formula (25) we find that the location of y⋆ on the axis y depends
on the ratio between α and (ρ+ δ + β). It is easy to see that

∗ for α > ρ+ δ + β we have y⋆ ∈ (0, 1);
∗ for α = ρ+ δ + β we have y⋆ = 0;
∗ for α < ρ+ δ + β we have y⋆ < 0.

From the analysis of the formula (31) we obtain that for α ≤ ρ + δ
there is no curve η̇ = 0 at the considered region η > 0. On the
contrary, for α > ρ + δ there exists the curve that is defined on the
interval (max{0; y⋆}, ŷ) and given by the formula (31).

– Let u(η) = 0. This is possible, if η < 0. Then, from the expression
(30) we find the formula

η = − 2α

δ + ρ
(y − y⋆), (32)
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which defines the decreasing linear function. As in the previous case,
at the point (y⋆, 0) the graph of the function (32) intersects with the
axis y. Therefore, we obtain the curve η̇ = 0 that is defined on the
interval (max{0; y⋆}, 1) and given by the formula (32).

Combining the previous results for the curve η̇ = 0, we have the relation-
ships:

α ≤ ρ+ δ : η = − 2α

δ + ρ
(y − y⋆), if y ∈ (0, 1), (33)

ρ+δ < α ≤ ρ+δ+β :

η = − 2α
δ + ρ

(y − y⋆), if y ∈ (0, 1),

η = −1− β
2α(y − ŷ)

, if y ∈ (0, ŷ),
(34)

α > ρ+ δ + β :


η = − 2α

δ + ρ
(y − y⋆), if y ∈ (y⋆, 1),

η = 0, if y = y⋆,

η = −1− β
2α(y − ŷ)

, if y ∈ (y⋆, ŷ).

(35)

Secondly, we define the signs of derivatives ẏ and η̇ in the plane (y, η).

• Let us consider the derivative ẏ. For this, we transform the first equation
of the system (21) as follows

ẏ = −αu(η)y2 + (αu(η)− δ)y + v(η). (36)

From the analysis of the expression (36), we see that

– at η < 0 the equalities u(η) = 0, v(η) = 0 and the relationship
ẏ = −δy < 0 hold. The line y = 0 itself is a trajectory of the
Hamiltonian system (21), (23), (24);

– at η > λ the equalities u(η) = 1, v(η) = vmax and the relationship
ẏ = −α

(
y − ỹ

)(
y − ˜̃y) hold. From this expression we conclude

that to the right of the line y = ỹ the inequality ẏ < 0 holds, and to
the left of it the inequality ẏ > 0 is valid. The line y = ỹ itself is a
trajectory of the Hamiltonian system (21), (23), (24);

– at 0 < η < λ the equalities u(η) = 1, v(η) = 0 and the relationship
ẏ = −αy(y − ȳ) hold. From this expression we conclude that for
α ≤ δ the inequality ẏ < 0 is valid. For α > δ we obtain that to the
right of the line y = ȳ the inequality ẏ < 0 holds, and to the left of
it the inequality ẏ > 0 is valid. The lines y = 0, y = ȳ themselves
are the trajectories of the Hamiltonian system (21), (23), (24).
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• Let us consider the derivative η̇. For this, we will transform the second
equation of the system (21)

– for η < 0 to the type

η̇ = (δ + ρ)

(
η +

2α

δ + ρ
(y − y⋆)

)
, (37)

– for η > 0 to the type

η̇ = 2α(y − ŷ)

(
η + 1 +

β

2α(y − ŷ)

)
. (38)

Analyzing the signs of the terms in the right hand sides of the equations
(37), (38) in the regions η < 0, η > 0, we have the following conclusions:

– at α ≤ δ + ρ above the line (33) we see that η̇ > 0, and below this
line we have η̇ < 0;

– at ρ + δ < α ≤ ρ + δ + β to the left of the curves (34) we see that
η̇ < 0, and to the right of these curves we have η̇ > 0;

– at α > ρ+ δ + β to the left of the curve (35) we see that η̇ < 0, and
to the right of this curve we have η̇ > 0.

6 Hamiltonian system

Now, we will analyze the Hamiltonian system (21), (23), (24) depending on the
initial condition y0 and the parameters α, δ, ρ, β. The following three cases will
be considered.

Case 1. Let α < δ + ρ+ β. It follows from the arguments of Section 5 that
the Hamiltonian system (21), (23), (24) has no rest points in the region η > 0.
At η < 0 the system (21) takes the form of the linear system{

ẏ = −δy,
η̇ = 2αy + (δ + ρ)

(
η − 2αy⋆

δ + ρ

)
.

(39)

Analysis of this system shows that there exists a rest point(
0,

2αy⋆
δ + ρ

)
, y⋆ < 0. (40)

Rev.Mate.Teor.Aplic. ISSN 1409-2433 (Print) 2215-3373 (Online) Vol. 22(1): 89–112, Jan 2015



OPTIMAL PRODUCTION–SALES STRATEGIES FOR A COMPANY 103

The eigenvalues (−δ), (δ + ρ) of the system (39) are real and have opposite
signs. Therefore, the rest point (40) is a saddle point. The line y = 0 from the
relationships (29) corresponds to the positive eigenvalue, and the line

η = − 2α

2δ + ρ

(
y − 2δ + ρ

δ + ρ
y⋆

)
to the negative eigenvalue. Moreover, both of these lines are the trajectories
of the system (39). The behavior of the trajectories similar to this system is
presented, for example, in [14]. Considering the signs of the derivatives ẏ and η̇ it
is easy to see that the trajectories of the Hamiltonian system (21), (23), (24) with
growth of t will approach the line η = 0 only from the region η < 0, intersect
it, and then go away from it in the region η > 0. By the second initial condition
(22), the solution of the TPBVP (21)–(24) must end on the line η = 0, and hence,
by the relationships (23), (24), the corresponding controls (u(η), v(η)) have the
type

u(η) = 0, v(η) = 0. (41)

In the considered case at α > δ + ρ + β(1 + λ)−1, in the region η > 0 there is
one more rest point (

0,−y⋆
ŷ

)
, y⋆ < 0. (42)

Simple calculations show that the matrix of the linear system corresponding to
the system (21) has the eigenvalues (α−δ), (−2αŷ) that are real and have oppo-
site signs. Therefore, the rest point (42) is unstable. The behavior of trajectories
of the Hamiltonian system (21) in the neighborhood of the point (42) does not
affect their behavior in the neighborhood of the line η = 0. In this situation the
phase portrait of the Hamiltonian system (21), (23), (24) is presented in Figure 1.

Case 2. Let α = δ + ρ + β. The difference from the previous case is only
that in this case, the rest points (40), (42) are converted into one point which is
located at the origin. The behavior of the trajectories of the Hamiltonian system
(21), (23), (24) in the neighborhood of the line η = 0 is similar to Case 1.
Therefore, the controls (u(η), v(η)) have the types (41).

Case 3. Let α > δ+ρ+β. We see that y⋆ > 0. It follows from the arguments
of Section 5 that to the right of the curve (35), the behavior of the trajectories of
the Hamiltonian system (21), (23), (24) is the same as in the previous two cases.
Therefore, at y0 > y⋆ with growth of t, the trajectories approach the line η = 0
from the region η < 0, intersect it, and then go away from it in the region η > 0.
So, the controls (u(η), v(η)) have the types (41). Moreover, the singular regime
(27) is possible if and only if the motion occurs along the line (32) and ends at
the point (y⋆, 0). (In Figure 2 such a trajectory is shown as a thick curve that

Rev.Mate.Teor.Aplic. ISSN 1409-2433 (Print) 2215-3373 (Online) Vol. 22(1): 89–112, Jan 2015



104 E.V. GRIGORIEVA – E.N. KHAILOV

–5

-4

-3

-2

-1

0

1

0.2 0.4 0.6 0.8 1

2

3

4

y

η η=0
.

η=0
.

Figure 1: Phase portrait of the Hamiltonian system at α < δ + ρ+ β.

starts on the right of y⋆ and at negative value of η). The corresponding control
u(η) switches from the value 0 to the value using, and the control v(η) remains
equal to the value 0. At y0 = y⋆ the controls (u(η), v(η)) have the singular
regime (27), i. e. the control (u(η), v(η)) have the types

u(η) = using, v(η) = 0.

At last, we can show that at the region η > 0 there exists the trajectory of the
Hamiltonian system (21), (23), (24) starting from the point (y⋆, 0) and moving to
the axis η as t is decreasing. Therefore, to the left of the curve (35), the behavior
of the trajectories of the system (21) is opposite. Namely, at y0 < y⋆ with the
growth of t, the trajectories approach the line η = 0 from the region η > 0,
intersect it, and then go away from it in the region η < 0. Therefore, by the
relationship (23), we obtain u(η) = 1, and the control v(η) will be either 0 or
it will switch from the value vmax to 0. Also, when the motion occurs alone
the mentioned trajectory and ends at the point (y⋆, 0), then the singular regime
(27) may occur. The corresponding control v(η) remains at the value 0, and the
control u(η) switches from the value 1 to the value using. In this case the phase
portrait of the Hamiltonian system (21), (23), (24) is presented in Figure 2.
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Figure 2: Phase portrait of the Hamiltonian system at α > δ + ρ+ β.

Remark 1 Similar analysis of Hamiltonian systems for economic growth mod-
els is presented in [9, 2, 6].

7 Types of the optimal controls

From the arguments of Section 6 we can make the following conclusions about
the types of the optimal controls (u∗(t), v∗(t)), t ∈ [0, T ]. Depending on the
initial condition y0 and the parameters α, δ, ρ, β the following situations are
possible.

• Let α ≤ δ + ρ + β. Then, the optimal controls (u∗(t), v∗(t)) are the
functions of the types

u∗(t) = 0, v∗(t) = 0, t ∈ [0, T ]. (43)

• Let α > δ + ρ+ β. Then,

– if y0 > y⋆, the optimal controls (u∗(t), v∗(t)) can be the functions

Rev.Mate.Teor.Aplic. ISSN 1409-2433 (Print) 2215-3373 (Online) Vol. 22(1): 89–112, Jan 2015



106 E.V. GRIGORIEVA – E.N. KHAILOV

either of the types

u∗(t) = 0, v∗(t) = 0, t ∈ [0, T ], (44)

or

u∗(t) =

{
0, if 0 ≤ t ≤ θ∗,

using, if θ∗ < t ≤ T,
v∗(t) = 0, t ∈ [0, T ], (45)

where θ∗ ∈ (0, T ) is the moment of switching;

– if y0 = y⋆, the optimal controls (u∗(t), v∗(t)) are the functions of
the types

u∗(t) = using, v∗(t) = 0, t ∈ [0, T ]; (46)

– if y0 < y⋆, the optimal controls (u∗(t), v∗(t)) can be the functions
either of the types

u∗(t) = 1, v∗(t) = 0, t ∈ [0, T ], (47)

or

u∗(t) = 1, t ∈ [0, T ], v∗(t) =

{
vmax, if 0 ≤ t ≤ τ∗,

0, if τ∗ < t ≤ T,
(48)

or

u∗(t) =

{
1, if 0 ≤ t ≤ θ∗,

using, if θ∗ < t ≤ T,
v∗(t) = 0, t ∈ [0, T ], (49)

or

u∗(t) =

{
1, if 0 ≤ t ≤ θ∗,

using, if θ∗ < t ≤ T,
v∗(t) =

{
vmax, if 0 ≤ t ≤ τ∗,

0, if τ∗ < t ≤ T,
(50)

where θ∗, τ∗ ∈ (0, T ) are the moments of switching.

In Figures 3–9 the graphs of the optimal controls (u∗(t), v∗(t)) are presented
for the situation α > δ + ρ+ β at different values of y0, respectively.
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Figure 3: Optimal controls
(u∗(t), v∗(t)) for
y0 > y⋆.

Figure 4: Optimal controls
(u∗(t), v∗(t)) for
y0 > y⋆.
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Figure 5: Optimal controls (u∗(t), v∗(t)) for y0 = y⋆.
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Figure 7: Optimal controls
(u∗(t), v∗(t)) for
y0 < y⋆.
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Figure 9: Optimal controls
(u∗(t), v∗(t)) for
y0 < y⋆.
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8 Numerical solution of the optimal control problem

Now, we describe the method of solving the optimal control problem (10), (12)–
(14) for different cases.

• Let α > δ + ρ + β and y0 > y⋆. For an arbitrary value θ ∈ [0, T ] we
define the control uθ(t) as

uθ(t) =

{
0, if 0 ≤ t ≤ θ,

using, if θ < t ≤ T.

The controls (uθ(t), v0(t)), where v0(t) = 0, include all possible types
(44), (45) of the optimal controls (u∗(t), v∗(t)). Then, we substitute the
controls (uθ(t), v0(t)) into the system (10) and integrate this system over
the interval [0, T ]. This yields the function yθ(t), which corresponds to the
controls (uθ(t), v0(t)), and which we then substitute into the functional
(13). The result is the function of one variable

F (θ) = J(uθ, v0), θ ∈ [0, T ].

• Let α > δ + ρ + β and y0 < y⋆. For arbitrary values θ, τ ∈ [0, T ] we
define the controls uθ(t), vτ (t) as

uθ(t) =

{
1, if 0 ≤ t ≤ θ,

using, if θ < t ≤ T,
vτ (t) =

{
vmax, if 0 ≤ t ≤ τ,

0, if τ < t ≤ T.

The controls (uθ(t), vτ (t)) include all possible types (47)–(50) of the opti-
mal controls (u∗(t), v∗(t)). Then, we substitute the controls (uθ(t), vτ (t))
into the system (10) and integrate this system over the interval [0, T ]. This
yields the function yθ,τ (t), which corresponds to the controls (uθ(t), vτ (t)),
and which we then substitute into the functional (13). The result is the
function of two variables

G(θ, τ) = J(uθ, vτ ), θ, τ ∈ [0, T ].

Thus, the optimal control problem (10), (12)–(14) is reduced to the problems
of constrained minimization:

F (θ) → min
θ∈[0,T ]

for α > δ + ρ+ β and y0 > y⋆;

G(θ, τ) → min
(θ,τ)∈[0,T ]×[0,T ]
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for α > δ + ρ + β and y0 < y⋆. The methods for numerical solution to these
problems are well-known [17].

In the situations α ≤ δ+ρ+β, α > δ+ρ+β and y0 = y⋆, the optimal con-
trols (u∗(t), v∗(t)) are the constant functions of the types (43), (46) respectively,
and therefore, they do not require numerical calculations.

9 Discussion of future research

Further investigations of the model presented in Section 2 can be conducted not
only by considering the Cobb-Douglas production function of the general form,
i.e. σ ∈ (0, 1), but also it can proceed in the following two ways.

First, we can consider a nonlinear model of the market, if instead of the
demand formula (5) we study the dependence of the type

p = p̄

(
1−

(
bY

p̄

) 1
γ

)
, (51)

where γ > 0, γ ̸= 1 is a given constant. Obviously, the expression (5) occurs,
if γ = 1. The formula (51) reflects the effects of price dropping or sharp price
increase of the consumer good on the market.

Secondly, we can consider a situation, when not all produced consumer good
Y is sent to the market, but only its part, wY . Here w ∈ [0, 1]. The remaining
part (1 − w)Y is sent to the company’s warehouse for storage. In this case, it
is possible to control of these parts. Therefore, there is another control w(t),
t ∈ [0, T ] satisfying the restrictions 0 ≤ w(t) ≤ 1. Then the Cauchy problem
(6) and the objective function (7) will have the following types:{
ẋ(t) = u(t)w(t) (p̄− bw(t)Π(x(t)))Π(x(t)) +K(t)− δx(t), t ∈ [0, T ],
x(0) = x0, x0 > 0.

I(u,w,K)=

T∫
0

e−ρt
{
(1− u(t))w(t) (p̄− bw(t)Π(x(t)))Π(x(t))− p0Π(x(t))

−q(1− w(t))Π(x(t))− (1 + λ)K(t)
}
dt+ e−ρTx(T ).

where q is storage cost of a unit of the consumer good.

10 Conclusion

In this paper we obtained important mathematical results regarding optimal pro-
duction and sales activity of a monopoly. We found that the optimal strategies
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depend on the comparison of the values of the model’s parameters, and that de-
pending on whether α is greater or less than or equal to the value of (δ+ ρ+β),
different optimal controls can be used in order to maximize profit. It is inter-
esting that for some initial conditions and model’s parameter, singular control
can be also optimal. Let us rewrite the key comparison α vs (δ + ρ + β) in the
following equivalent form (p̄ − p0)r vs (δ + ρ). On its left, there is the profit
of the monopoly obtained from the sales of the consumer good on the market
at the maximum possible market price p̄ produced by the unit of the production
funds. On its right, there is the total loss of the company caused by the amorti-
zation of the production funds (δ) and by rate of inflation (ρ). Thus, if the profit
(p̄ − p0)r is greater than the total loss (δ + ρ), then depending on the initial
condition y0, the company can do both, reinvest part of the obtained profit into
expansion of the production, and even take loans. Opposite, if (p̄−p0)r ≤ δ+ρ,
then the monopoly must be advised to produce and sale without taking any loans
or planning expansion of the production. Finally, investigation of the modified
model with nonlinear production function and with additional inventory control
will be conducted in our future research.
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