
Revista de Matemática: Teoŕıa y Aplicaciones 2013 20(1) : 35–48

cimpa – ucr issn: 1409-2433

one-side oscillation strategic

approach

enfoque estratégico de oscilación

unilateral

Ricardo Beausoleil∗ Yasser Valcárcel Miró†
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Abstract

This paper reports an approach developed to find a good quality
solution for a generalized assignment problem with application to the
Dimensional Cutting Problem. The objective at the Cutting Problem
is to divide different pools of pieces of the same dimension among
different items of available material all having two dimensions, the
width and length. The solution is found keeping the largest num-
ber of pieces in a single material. Some initial numerical experi-
ences found for the algorithm optimal and suboptimal solutions or
instances of more than 500 pieces at a very low computational cost.

Keywords: heuristics, greedy algorithm, backtrack algorithm, one-di-

mensional cutting problem.

Resumen

El presente art́ıculo presenta un enfoque desarrollado para en-
contrar una solución de alta calidad para un problema de asignación
generalizado con aplicaciones al Problema de Cortes Dimensionales.
El objetivo en el Problema de Cortes es dividir diferentes juegos de
piezas de las mismas dimensiones dentro de varios art́ıculos de ma-
terial disponible, teniendo ambos dos dimensiones: ancho y largo.
La solución es tomada manteniendo el mayor número de piezas en
un sólo material. Algunas experiencias numéricas encontraron solu-
ciones óptimas y cuasi-óptimas para el algoritmo en no más de 500
piezas con un costo computacional bajo.

Palabras clave: Heuŕısticas, algoritmo goloso, algoritmo backtrack, pro-
blema unidimensional de cortes.

Mathematics Subject Classification: 97M40, 90C59, 68T20.

1 Introduction

The difficulties of cutting yield often on the efficient use of the materials.
One way to overcome this objective is to allocate the pieces in the mate-

rials having to be cut in such a way that either the rest or each length
of material is minimized. A heuristic to the One Dimensional Cutting

Problem was described in [1]. In this paper we report a one-side strategic
oscillation approach [4] heuristic technique for the linear Two Dimension

Cutting Problem (length and width) for the materials and pieces. This ap-
proach operates by alternating constructive and destructive phases where

each solution generated by a constructive phase is dismantled to a variable
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degree by a destructive phase, after which a new constructive phase builds
the new solution. The complexity of any procedure for solving this class

of problems is expected to be exponential in the number of pieces and the
materials involved.

The present paper is divided into 7 sections, section 2 introduces the

One Dimensional Cutting Problem as section 3 presents a model describing
the DCP, then 2 heuristic approaches are schemed in section 4 for the

latter presentation of a formal procedure solving the DCP. Section 6 then
presents some experimental results of a particular instance of the Cutting

Problem and section 7 summarizes the results of the present algorithm
solving the One Dimensional Cutting Problem by means of a one-side

oscillation strategic approach.

2 Problem definition

A formal introduction of the two dimension cutting stock problem will be
presented as an Assignment Problem at the present section.

We are given a set of indices of materials R = {1, 2, . . . , m}, let us

consider one type of material with properties of uniformity, such as regular
geometric shape and two dimensions, a set of indices of type of a piece

or T = {1, 2, . . . , q}, a list of q demands of pieces of different types D =
{d1, d2, . . . , dq}.

Associated to each type of material we have s pools of pieces, each one

of them composed of pieces of the same dimension; s being the number of
cwt equal to the material consumed by each piece associated to a material

of width w and type t. Let us denote by wr the width of material r, by
lr it’s length, by crt the length of material r consumed by each type of

piece t. Let us as well define as pit the number of pieces of type t with the
width i. Consider that:

s
∑

i=1

pit ≤ dt ∀t ∈ T

and pit > 0, ∀t ∈ T, i = 1, . . . , s. We wishato assign the pieces to each item
of available material, maximizing the residual material, but minimizing at

the same time the items used, for each item of width wp we could only
allocate pieces of the same width of the material selected.
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3 Mathematical model

Let then be the following Mixed-Integer Linear Program:

• R = {1, 2, , . . . , m} set of indices of items of materials,

• G = {1, 2, , . . . , m} set of indices of items of pieces,

• crg material r consumed by the piece g.

Defining

xrg =

{

1, if the piece g is assigned to the material r

0, otherwise.

Being:

min
∑

R aryr (1)

s.t :
∑

G crgxrg + yr = lr ∀r ∈ R
∑

R xrg = 1 ∀g ∈ G (2)

xrg ∈ {0, 1} ∀r ∈ R, ∀g ∈ G

yr ≥ 0 ∀r ∈ R

The number of variables increases exponentially with the number of

pieces and materials involved. Two heuristic algorithms were developed
to solve this problem, one, referred to as dual, is used to obtain a lower

bound while a primal one finds an upper bound aiming to be as near to
the optimal value as possible. We formulate the dual linear program [2],

associated with the LP relaxation to the Mixed-Integer Program and solve
this heuristically.

Dual Linear Program associated with the LP Relaxation.

max
∑

R lrur +
∑

G yr (3)

s.t :

lrur ≤ wr ∀r ∈ R (4)

crgur + yg ≤ 0 ∀r ∈ R, ∀g ∈ G (5)

with uryr unrestricted in sign.
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4 Heuristic algorithms

4.1 Dual procedure

In order to obtain a feasible solution we make a partition in G, D1 =
{1, . . . , d1}, D2 = {d1 + 1, . . . , d2} , . . . , Dq = {dq−1 + 1, . . . , dq}, in such a
way that:

Di

⋂

Dj = ∅

q
⋃

i=1

Di = G.

Then we can write 3 in the following form:

crtur + yt ≤ 0, ∀r ∈ R, t = [1, q] (6)

where for each Dt, crt = crg, for every g ∈ Dt whenever r ∈ R is fixed.
Then for each g ∈ Dt, crg is a constant. From 4 we have that ur ≤ wr/lr,

there exists r0 such that wr0
/lr0

≤ wr/lr, ∀r 6= r0, then, if we take ur =
wr0

/lro
= ar0

, for all r ∈ R the constraint 4 holds. Then from 6 we obtain

the following inequalities:

yl ≤ min
{

−cr1ar0

}

, y2 ≤ min
{

−cr2ar0

}

, . . . , yq ≤ min
{

−crqar0

}

Now, if we take yt = min
{

−cr1art

}

, ∀t = [1, q] , r ∈ R, we obtain a
feasible solution. The objective can be written as follows:

ar0





∑

R

lr −
∑

t=1,...,q

dtcr
′
t



 ,

where cr
′
t = max {crt} , ∀r ∈ R and t fixed, then we have the following

lower bound:

LB = max







0, ar0





∑

R

lr −
∑

t=1,...,q

dtcr
′
t











.

4.2 Primal procedure

The basic idea of the algorithm is:
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1. First to allocate as many pieces as possible in the material of di-
mension r that has been associated to the maximum value of the

coefficient ar, so as to satisfy: ar1
≤ ar2

≤ . . . arm
, which is called

the IPWL or “Importance per width and length” rule. Apply it

iteratively until no capacity is left to allocate pieces of the selected
items. The application of this rule generates a sequence of items,

denoted as forward sequence. If more pieces need yet to be assigned,
go to (2).

2. Create a back sequence of items of materials in the following form.

First, go back to the previous item at the seed point in the current
back sequence(at the beginning, the seed point in the back sequence

is the last item in the forward sequence), then set a new seed point; at
this moment we have a sub-sequence of the forward sequence, forbid

the start of an assignment from the pool of pieces that began this
sub-sequence and re-install the pieces allocated in your associated

pools and then apply the first rule, until we do not have any piece
to allocate or all pools that have pieces to assign are forbidden to
begin the assignment. If all pools of pieces associated to the selected

material were forbidden and the seed point of the forward sequence
was not reached, go to (2), otherwise go to (3).

3. If the utility is greater than the lower bound and no pieces were yet
to be assigned, then forbid the pool beginning the last iteration and

go to (2), otherwise stop. Here we’re supposing that we have to test
s× q possibilities, one for each iteration, where s is the width and q

the number of pieces.

4. Create a back sequence of items in the following manner: Return
to the previous item at seed point on the back sequence, since at

the beginning a seed point is the last item on the forward sequence.
Then set a new seed point, at this moment we have a subsequence

hence re-install the pieces allocated on the associated pools. If at
least one pool having pieces to assign is not forbidden to begin the

assignment apply (2) if all pools of pieces associated to the selected
material were forbidden and the seed point of the forward sequence

were not reached go to (4), else go to (3).
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4.3 Steps of the method

Step 1 (Initialization)

• Create feasible items of materials.

• Choose the material r0 that have coefficient ar0
= max {ar} in

such a way that at least one pool of pieces associated to the
selected material had not began any previous iteration.

• Choose the pool of pieces in such a way that this pool had not
began any iteration in the past and the pieces of this pool could
be assigned to the selected material r0. Initialization of the

set S.

• Forbid the selected pool of pieces to begin the following itera-

tions. If all pools of pieces associated to wide w0 corresponding
to selected material r0 began one iteration in the past, then

forbid all items of materials that have been selected of wide w0

to begin the following iterations.

• If rule (R1) is violated, then create feasible set of materials.

Step 2 (Assignment)

(A) Choose a feasible material r0 in IPWL order. Choose the
biggest feasible pool of pieces in such a way that your pieces

could be allocated in the selected material. Load the material
with the greatest possible amount of pieces of the selected pool.

If rule (R1), is violated then create a new feasible set of mate-
rials.

(B) (Update) Let us call UBnow and UBnext the current and
next upper bounds respectively. If Ubnow<Ubnext then re-

set Ubnow=Ubnext. If Ubnow=LB or(variants were always
executed) then output the solution and stop, Otherwise return

to (A).

(C) (Destructive Phase) Apply the rule (R3). Update the materials
that will receive pieces, that is, set r0 = rsp. Apply the (R2)

and return to (A).

Rules:

(R1) If we do not have feasible items of materials and we have pieces to
assign, then apply a Destructive Phase.
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(R2) Re-install the pieces that were assigned in the sequences of rolls
selected and forbid the greatest size of the pieces contained in the

seed point of this sequence.

(R3) Select the rsp material previous to the seed point in the back se-
quence, initially the seed point in the back sequence is the last item
of material in the forward sequence.

5 Formal procedure

A rather informal description of the solution method presented in the
previous sections and subsections will be stated. Then the Dual Procedure

will be as follows:

• Choose ar0
= min{wr/lr} , ∀r ∈ R.

• Set y
′
= max {crt, ∀r ∈ R} , ∀t ∈ [1, q].

• evaluate LB = ar0
(
∑

R lr −
∑q

t=1 dty
′

).

• If LB > 0 then set it to zero.

Now we proceed to describe a one-side oscillation procedure for our
original problem. In such way new definitions are required:

• Rf =
{

r : r ∈ R, lr ≥ min
{

crt : t ∈ T
′
}}

.

• T
′
= {tp, tp+1, . . . , tp+l}, set of type pieces available for assignation.

• S set of assigned pieces.

• LT list of forbidden types of pieces.

• Gb collection of types of pieces not available at the beginning of a
iteration.

• RS sequence of items of materials created on the assignment process.

Primal Procedure(One-side oscillation)

begin
set Gb = ∅;
while Gb 6= s × q do,
begin
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S = ∅; Rf = ∅; LT = ∅; T
′
= T ;

Create Rf

if Rf = ∅ then output(unfeasible solution); Exit;
% Select the material

Choose r0 ∈ Rf : ar0
= max {ar = wr/lr∀r ∈ R, wr /∈ Gbw}

%The type of the piece associated to material of dimension r0 selected

Choose t0 : ∃t ∈ T
′
− Gb, cw0t0 = max

{

cw0t : t ∈ T
′
− Gb ∧ cw0t0 ≤ lr0

}

% Where w0 is the wide of the material r0

Assign all the possible pieces of size t0 of the selected material r0;

If the pieces of type t0 had always been satisfied then T
′
= T

′
− t0

Gb = Gb + t0;

Create Rf ;
forward;

if T
′
= ∅ then output (’solution,S’);

else (’a solution was not attained’);
if the pieces of type t0 had been satisfied then Gbw = Gbw + w0;

end;
end;

Forward Procedure
begin

while Rf 6= ∅ & T
′
− LT 6= ∅

begin
Choose r0 ∈ Rf : ar0

= max
{

ar, r ∈ Rf
}

Set RS(k) = RS(k) + r0; update k;
% Select the type of the piece associated to material r0 selected

Choose t0 : ∃t ∈ T − LT, cw0t0 = max {cw0t : t ∈ T − LT ∧ cw0t0 ≤ lr0
}

Where w0 is the width of the material r0

% The following while repeats while exists demand and the length of
% the selected material be greater than the consumed by the piece

while demand & length do,
begin
Choose gt0 /∈ s :

Set S = S + gt0;
Create a new Rf ;

while Rf 6= ∅ ∧ T
′
6= ∅ do,

begin
Update the seed point of the back sequence;
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goback;
end;

end;
end;

end;

Goback Procedure
begin

Rf = Rf + {rsp for all p on the back sequence };

T
′
=

{

T
′
+ tp : tp for all pieces pertaining

to the back sequence }
S = S − {g : g was assigned to at least one rsp pertaining
to the back sequence }
LT = LT − max {tp : tp type of first item of pieces assigned
to the back sequence }
forward;

end;

Example 1 A simple example clarifying the use of the algorithm would

be. Suppose the items to be rolls of clothes of different width and length,
hence the type are their sizes, also suppose that we had 3 sizes and 3 rolls.

Let’s take the widths equal to 2, 2 and 3 meters respectively, the lengths
of 5, 4 and 3 meters, the sizes ss, s and m, and let finally the demand be

of garments of 4, 3 and 2 respectively.
Then we have, T = {ss, s, m}, R = {1, 2, 3}, D = {4, 3, 2} and G =

{1, 2, . . . , 9}. Let us then express in a 3× 9 matrix the material consumed

for the garments in each roll of different wide which we will call C.

C =





1 1 1 1 1.5 1.5 1.5 2 2

1 1 1 1 1.5 1.5 1.5 2 2
0.7 0.7 0.7 0.7 1.2 1.2 1.2 1.8 1.8





Then a1 = 2/5, a2 = 2/4 and a3 = 3/3 and the system is as follows:

x11 + x12 + x13 + x14 + 1.5x15 + 1.5x16 + 1.5x17 + 2x18 + 2x19 + y1 = 5

x21 + x22 + x23 + x24 + 1.5x25 + 1.5x26 + 1.5x27 + 2x28 + 2x29 + y2 = 4

0.7x31 + 0.7x32 + 0.7x33 + 0.7x34 + 1.2x35 + 1.2x36+
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Wide
Size

1 2 3 4 5 6

1 1 1.5 2 2.5 3 3.2

Table 1: Fabric consumed by a set of molds.

Wide
Size

1 2 3 4 5 6 7

151 130 160 125 100 165 70
8 9 10 11 12 13 -

1 85 70 95 80 88 123 -

Table 2: Length of the rolls.

+1.2x37 + 1.8x38 + 1.8x39 + y3 = 3.

The algorithm would set, x38 = 1 and then y3 = 1.2, x35 = 1 and then
y3 = 0. Selecting another roll we would set x29 = 1 and then y2 = 2,

x26 = 1 and then y2 = 0.5, and finally selecting the last roll, x17 = 1 then
y1 = 3.5, x11 = x12 = x13 = 1 and at last y1 = 0.5.

In this moment we do not have place to allocate garments, set of mod-

ules for garments, but we still have some garments unassigned, then this
solution is not feasible, for this reason we destroy this solution using the

backtrack algorithm and construct a new solution.

Select x38 = 1, x35 = 1 and then y3 = 0. x26 = x27 = 1 then y2 = 1,
x21 = 1 then y2 = 0, x19 = 1 then y1 = 3, x12 = x13 = x14 = 1 then

y1 = 0, hence obtaining an optimal solution.

6 Computational experiment

We now illustrate some computational experiments. We had applied our
algorithm to the clothing industry; in that problem a piece would be
equivalent to the fabric used by the set of models to obtain each model of

demanded garment.

Size 1 2 3 4 5 6

Demand 82 75 150 108 57 156

Table 3: Demand of garments.
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Size
Roll

1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 81

2 1 20 53 1 1 1
3 75 8 65 1

4 15 50 1 1 1 10
5 25 32

6 7 21 26 21 29 25 27 13

Table 4: Example of optimal distribution of fabrics.

Size
Roll

1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 1 1 78 1
2 1 18 55 1 1

3 75 8 66 1
4 45 50 1 12

5 3 23 31
6 28 26 21 29 25 27

Table 5: Example of optimal distribution of fabrics.

Six sizes of garments are demanded. We work with materials, in our

case rolls of clothes of one dimension of length, for which we consider the
width as equal to 1 at each roll. The fabric consumed for a set of molds
for each size, is shown inTable 1, while Table 3 shows the demand of each

garments. In this example we have thirteen rolls; the length are shown in
Table 2.

Tables 4 and 5 show two optimal distributions of the fabric pieces, set
of molds, of each size needed to satisfy the demand of garments on the

rolls. In this example both the upper and lower bounds were equal to
0.04, for this reason we can say that this result is optimal.

Wide
Roll

1 2 3 4 5 6 7

1 70 45 65 40
2 52 46 50

Table 6: Dimensions of the seven rolls.
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Size 1 2 3 4 5

Demand 45 73 56 26 12

Table 7: Demands of sizes.

Roll Wide I Wide II
Size 1 2 3 4 1 2 3

1 30 14 1

2 30 34 8 1
3 14 34 8

4 23 3
5 12

Table 8: Different allocations of the molds.

Table 6 shows seven rolls and two widths and length of each one, while
Table 7 shows the demand and Table 8 two different allocations of the set
of molds at each roll.

In this experiment we have two widths, 1 and 2 meters respectively,
the coefficients of the material consumed were c11 = 1, c12 = 1.5, c13 =
2, c14 = 2.5, c15 = 3, c21 = 0.6, c22 = 1, c23 = 1.5, c24 = 2 and c25 = 2.6.

The spared clothes in both experiments were: In the first allocation
40m in the roll of length 70m and widths 1m and 20cm. In the roll
of length 46m and width 2m, in the second allocation 40m in the roll

with length 70m and width 1m and 20cm in the roll of length 50m and
width 2m. In this example the upper and lower bounds were 0.5 and 0.01

respectively, while the gap between these gives an indication of the quality
of the solution obtained.

7 Conclusion

In this paper we considered a Two-Dimensional Cutting Problem that asks
to maximize the efficient use of the material. The traditional methods give
impractical solutions for this problem. Thus, we have proposed a heuristic

approach that uses a Greedy with Backtracking Technique [3] and shows
that it gives optimal or near optimal solutions in a very low computational

time (seconds) in a personal computer for problem instances of more than
500 pieces.
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